login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A204208
Number of length n+1 nonnegative integer arrays starting and ending with 0 with adjacent elements differing by no more than 3.
2
1, 4, 16, 78, 404, 2208, 12492, 72589, 430569, 2596471, 15870357, 98102191, 612222083, 3852015239, 24408653703, 155629858911, 997744376239, 6427757480074, 41590254520410, 270163621543421, 1761179219680657
OFFSET
1,2
COMMENTS
Column 3 of A204213
Number of excursions (walks starting at the origin, ending on the x-axis, and never go below the x-axis in between) with n steps from {-3,-2,-1,0,1,2,3}. - David Nguyen, Dec 16 2016
LINKS
C. Banderier, C. Krattenthaler, A. Krinik, D. Kruchinin, V. Kruchinin, D. Nguyen, and M. Wallner, Explicit formulas for enumeration of lattice paths: basketball and the kernel method, arXiv preprint arXiv:1609.06473 [math.CO], 2016.
FORMULA
G.f.: exp( Sum_{n>=1} A025012(n)*x^n/n ) - 1, where A025012(n) = central coefficient of (1+x+x^2+x^3+x^4+x^5+x^6)^n. - Paul D. Hanna, Aug 01 2013
a(n) = Sum_{i=1..n}((Sum_{j=0..(3*i)/7}(binomial(i,j)*binomial(-7*j+4*i-1,3*i-7*j)*(-1)^j))*a(n-i))/n. - Vladimir Kruchinin, Apr 06 2017
EXAMPLE
Some solutions for n=5
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..2....1....3....3....2....2....1....2....0....0....2....3....0....3....1....2
..5....3....2....2....2....3....1....5....3....0....2....4....3....2....0....3
..2....6....3....4....0....1....0....6....5....1....0....6....5....2....2....5
..2....3....3....3....2....3....3....3....2....1....0....3....3....0....3....3
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
MATHEMATICA
a[n_] := a[n] = If[n == 0, 1, Sum[(Sum[Binomial[i, j] Binomial[-7j + 4i - 1, 3i - 7j] (-1)^j, {j, 0, (3i)/7}]) a[n - i], {i, 1, n}]/n];
a /@ Range[1, 21] (* Jean-François Alcover, Sep 24 2019, after Vladimir Kruchinin *)
PROG
(PARI) {A025012(n)=polcoeff((1+x+x^2+x^3+x^4+x^5+x^6 +x*O(x^(3*n)))^n, 3*n)}
{a(n)=polcoeff(exp(sum(m=1, n, A025012(m)*x^m/m)+x*O(x^n)), n)}
for(n=0, 30, print1(a(n), ", ")) \\ Paul D. Hanna, Aug 01 2013
(Maxima)
a(n):=if n=0 then 1 else sum((sum(binomial(i, j)*binomial(-7*j+4*i-1, 3*i-7*j)*(-1)^j, j, 0, (3*i)/7))*a(n-i), i, 1, n)/n; /* Vladimir Kruchinin, Apr 06 2017 */
CROSSREFS
Sequence in context: A020051 A020006 A207653 * A138294 A014514 A000780
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 12 2012
STATUS
approved