login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A204209
Number of length n+1 nonnegative integer arrays starting and ending with 0 with adjacent elements differing by no more than 4.
1
1, 5, 25, 155, 1025, 7167, 51945, 387000, 2944860, 22791189, 178840639, 1419569398, 11377983292, 91957314063, 748575327757, 6132254500856, 50514620902564, 418174191239443, 3477075679541185, 29026557341147912, 243184916545458556
OFFSET
1,2
COMMENTS
Column 4 of A204213.
Number of excursions (walks starting at the origin, ending on the x-axis, and never go below the x-axis in between) with n steps from {-4,-3,-2,-1,0,1,2,3,4}. - David Nguyen, Dec 16 2016
LINKS
C. Banderier, C. Krattenthaler, A. Krinik, D. Kruchinin, V. Kruchinin, D. Nguyen, and M. Wallner, Explicit formulas for enumeration of lattice paths: basketball and the kernel method, arXiv preprint arXiv:1609.06473 [math.CO], 2016.
FORMULA
a(n) = Sum_{i=1..n} ((Sum_{j=0..(4*i)/9} (binomial(i,j)*binomial(-9*j+5*i-1,4*i-9*j)*(-1)^j))*a(n-i))/n. - Vladimir Kruchinin, Apr 06 2017
EXAMPLE
Some solutions for n=5
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..3....3....3....2....1....2....4....4....3....3....2....2....0....1....4....4
..0....2....5....1....3....0....2....2....2....5....1....0....3....5....3....6
..0....1....6....2....4....3....1....3....3....2....2....1....3....3....1....3
..3....3....3....2....3....3....3....4....2....3....0....1....3....1....2....0
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
MATHEMATICA
a[n_] := a[n] = If[n == 0, 1, Sum[(Sum[Binomial[i, j] Binomial[-9j + 5i - 1, 4i - 9j] (-1)^j, {j, 0, (4i)/9}]) a[n - i], {i, 1, n}]/n];
a /@ Range[1, 21] (* Jean-François Alcover, Sep 24 2019, after Vladimir Kruchinin *)
PROG
(Maxima)
a(n):=if n=0 then 1 else sum((sum(binomial(i, j)*binomial(-9*j+5*i-1, 4*i-9*j)*(-1)^j, j, 0, (4*i)/9))*a(n-i), i, 1, n)/n; /* Vladimir Kruchinin, Apr 06 2017 */
CROSSREFS
Sequence in context: A216689 A297589 A092166 * A121112 A090014 A249475
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 12 2012
STATUS
approved