login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A216689
Expansion of e.g.f. exp( x * exp(x)^2 ).
11
1, 1, 5, 25, 153, 1121, 9373, 87417, 898033, 10052353, 121492341, 1573957529, 21729801481, 318121178337, 4917743697805, 79981695655801, 1364227940101857, 24335561350365953, 452874096174214117, 8772713803852981785, 176541611843378273401, 3684142819311127955041, 79596388271096140589949
OFFSET
0,3
FORMULA
O.g.f.: Sum_{n>=0} x^n / (1 - 2*n*x)^(n+1). - Paul D. Hanna, Aug 02 2014
a(n) = Sum_{k=0..n} binomial(n,k) * (2*k)^(n-k) for n>=0. - Paul D. Hanna, Aug 02 2014
From Vaclav Kotesovec, Aug 06 2014: (Start)
a(n) ~ n^n / (exp(2*n*r/(1+2*r)) * r^n * sqrt((1+6*r+4*r^2)/(1+2*r))), where r is the root of the equation r*(1+2*r)*exp(2*r) = n.
(a(n)/n!)^(1/n) ~ exp(1/(2*LambertW(sqrt(n/2)))) / LambertW(sqrt(n/2)).
(End)
MATHEMATICA
With[{nn = 25}, CoefficientList[Series[Exp[x Exp[x]^2], {x, 0, nn}], x] Range[0, nn]!] (* Bruno Berselli, Sep 14 2012 *)
PROG
(PARI)
x='x+O('x^66);
Vec(serlaplace(exp( x * exp(x)^2 )))
/* Joerg Arndt, Sep 14 2012 */
(PARI) /* From o.g.f.: */
{a(n)=local(A=1); A=sum(k=0, n, x^k/(1 - 2*k*x +x*O(x^n))^(k+1)); polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", ")) /* Paul D. Hanna, Aug 02 2014 */
(PARI) /* From binomial sum: */
{a(n)=sum(k=0, n, binomial(n, k)*(2*k)^(n-k))}
for(n=0, 30, print1(a(n), ", ")) /* Paul D. Hanna, Aug 02 2014 */
CROSSREFS
Cf. A216507 (e.g.f. exp(x^2*exp(x))), A216688 (e.g.f. exp(x*exp(x^2))).
Cf. A000248 (e.g.f. exp(x*exp(x))), A003725 (e.g.f. exp(x*exp(-x))).
Cf. A240165 (e.g.f. exp(x*(1+exp(x)^2))).
Sequence in context: A106565 A200031 A374984 * A297589 A092166 A204209
KEYWORD
nonn
AUTHOR
Joerg Arndt, Sep 14 2012
STATUS
approved