Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #32 Oct 31 2024 08:55:49
%S 1,1,5,25,153,1121,9373,87417,898033,10052353,121492341,1573957529,
%T 21729801481,318121178337,4917743697805,79981695655801,
%U 1364227940101857,24335561350365953,452874096174214117,8772713803852981785,176541611843378273401,3684142819311127955041,79596388271096140589949
%N Expansion of e.g.f. exp( x * exp(x)^2 ).
%H Vincenzo Librandi, <a href="/A216689/b216689.txt">Table of n, a(n) for n = 0..200</a>
%H Vaclav Kotesovec, <a href="http://oeis.org/A216688/a216688.pdf">Asymptotic solution of the equations using the Lambert W-function</a>
%F O.g.f.: Sum_{n>=0} x^n / (1 - 2*n*x)^(n+1). - _Paul D. Hanna_, Aug 02 2014
%F a(n) = Sum_{k=0..n} binomial(n,k) * (2*k)^(n-k) for n>=0. - _Paul D. Hanna_, Aug 02 2014
%F From _Vaclav Kotesovec_, Aug 06 2014: (Start)
%F a(n) ~ n^n / (exp(2*n*r/(1+2*r)) * r^n * sqrt((1+6*r+4*r^2)/(1+2*r))), where r is the root of the equation r*(1+2*r)*exp(2*r) = n.
%F (a(n)/n!)^(1/n) ~ exp(1/(2*LambertW(sqrt(n/2)))) / LambertW(sqrt(n/2)).
%F (End)
%t With[{nn = 25}, CoefficientList[Series[Exp[x Exp[x]^2], {x, 0, nn}], x] Range[0, nn]!] (* _Bruno Berselli_, Sep 14 2012 *)
%o (PARI)
%o x='x+O('x^66);
%o Vec(serlaplace(exp( x * exp(x)^2 )))
%o /* _Joerg Arndt_, Sep 14 2012 */
%o (PARI) /* From o.g.f.: */
%o {a(n)=local(A=1);A=sum(k=0, n, x^k/(1 - 2*k*x +x*O(x^n))^(k+1));polcoeff(A, n)}
%o for(n=0,25,print1(a(n),", ")) /* _Paul D. Hanna_, Aug 02 2014 */
%o (PARI) /* From binomial sum: */
%o {a(n)=sum(k=0,n, binomial(n,k)*(2*k)^(n-k))}
%o for(n=0,30,print1(a(n),", ")) /* _Paul D. Hanna_, Aug 02 2014 */
%Y Cf. A216507 (e.g.f. exp(x^2*exp(x))), A216688 (e.g.f. exp(x*exp(x^2))).
%Y Cf. A000248 (e.g.f. exp(x*exp(x))), A003725 (e.g.f. exp(x*exp(-x))).
%Y Cf. A240165 (e.g.f. exp(x*(1+exp(x)^2))).
%K nonn
%O 0,3
%A _Joerg Arndt_, Sep 14 2012