OFFSET
0,4
FORMULA
a(n) = round(log_2(n!)).
a(n) = round(Sum_{k=1..n} log_2(k)). - Tom Edgar, Jun 10 2015
a(n) is within 1 of n*(log(n)-1)/log(2) + log(n)/(2*log(2)) + log(sqrt(2*Pi))/log(2) for n >= 1. - Robert Israel, Jun 10 2015
EXAMPLE
a(6) = round(log_2(6!)) = round(9.49...) = 9.
MAPLE
seq(round(lnGAMMA(n+1)/ln(2)), n=0..100); # Robert Israel, Jun 10 2015
MATHEMATICA
Round[Log[2, Range[0, 100]! ]] (* Giovanni Resta, Jun 10 2015 *)
PROG
(MATLAB) for i = 1:20 { disp(round(log2(factorial(i)))) } end
(PARI) a(n) = round(log(n!)/log(2)); \\ Michel Marcus, Jun 10 2015
(PARI) a(n)=round(lngamma(n+1)/log(2)) \\ Charles R Greathouse IV, Jun 10 2015
(Magma) [Round(LogGamma(n+1)/Log(2)): n in [0..70]]; // Bruno Berselli, Jun 23 2015
(Sage) [round(log_gamma(n+1)/log2) for n in (0..70)] # Bruno Berselli, Jun 23 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Eli Sadoff, Jun 10 2015
STATUS
approved