The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A349993 a(n) is the number of squares k^2 with n^2 <= k^2 <= n^3. 2
 1, 1, 1, 3, 5, 7, 9, 12, 15, 19, 22, 26, 30, 34, 39, 44, 49, 54, 59, 64, 70, 76, 82, 88, 94, 101, 107, 114, 121, 128, 135, 142, 150, 157, 165, 173, 181, 189, 197, 205, 213, 222, 231, 239, 248, 257, 266, 276, 285, 295, 304, 314, 323, 333, 343, 353, 364, 374, 384, 395, 405 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Interval with n^2 and n^3 excluded is A349662. LINKS Karl-Heinz Hofmann, Table of n, a(n) for n = 0..10000 FORMULA a(n) = floor(sqrt(n^3)) - n + 1. - Giorgos Kalogeropoulos, Dec 08 2021 MATHEMATICA Table[Floor[Sqrt[n^3]]-n+1, {n, 0, 100}] (* Giorgos Kalogeropoulos, Dec 08 2021 *) PROG (PARI) a(n) = sqrtint(n^3) - n + 1 (PARI) a(n)=sum(k=n^2, n^3, issquare(k)) (PARI) for(n=0, 60, my(n2=n^2, n3=n^3); print1(sum(k=n2, n3, issquare(k)), ", ")) (Python) def a(n): counter = 0 while (n+counter)**2 <= n**3: counter += 1 return (counter) print([a(n) for n in range(0, 60)]) (Python) from math import isqrt def A349993(n): return isqrt(n**3) - n + 1 # Chai Wah Wu, Dec 08 2021 CROSSREFS Cf. A000290, A000578. Cf. A349662 (number of squares k^2 with n^2 < k^2 < n^3). Cf. A028387 (Also the number of squares between (n+2)^2 and (n+2)^4). Sequence in context: A080751 A025218 A258782 * A007078 A226332 A226331 Adjacent sequences: A349990 A349991 A349992 * A349994 A349995 A349996 KEYWORD nonn,easy AUTHOR Karl-Heinz Hofmann and Hugo Pfoertner, Dec 08 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 24 07:41 EDT 2024. Contains 373663 sequences. (Running on oeis4.)