login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A204202
Triangle based on (0,2/3,1) averaging array.
2
2, 2, 5, 2, 7, 11, 2, 9, 18, 23, 2, 11, 27, 41, 47, 2, 13, 38, 68, 88, 95, 2, 15, 51, 106, 156, 183, 191, 2, 17, 66, 157, 262, 339, 374, 383, 2, 19, 83, 223, 419, 601, 713, 757, 767, 2, 21, 102, 306, 642, 1020, 1314, 1470, 1524, 1535, 2, 23, 123, 408, 948
OFFSET
1,1
COMMENTS
See A204201 for a discussion of averaging arrays and related triangles
FORMULA
From Philippe Deléham, Dec 24 2013: (Start)
T(n,n) = A055010(n) = A083329(n) = A153893(n-1).
Sum_{k=1..n} T(n,k) = A066373(n+1).
T(n,k) = T(n-1,k)+3*T(n-1,k-1)-2*T(n-2,k-1)-2*T(n-2,k-2), T(1,1)=2, T(2,1)=2, T(2,2)=5, T(n,k)=0 if k<1 or if k>n. (End)
EXAMPLE
First six rows:
2
2...5
2...7....11
2...9....18...23
2...11...27...41...47
2...13...38...68...88..95
MATHEMATICA
a = 0; r = 2/3; b = 1;
t[1, 1] = r;
t[n_, 1] := (a + t[n - 1, 1])/2;
t[n_, n_] := (b + t[n - 1, n - 1])/2;
t[n_, k_] := (t[n - 1, k - 1] + t[n - 1, k])/2;
u[n_] := Table[t[n, k], {k, 1, n}]
Table[u[n], {n, 1, 5}] (* averaging array *)
u = Table[(1/r) 2^n*u[n], {n, 1, 12}];
TableForm[u] (* A204202 triangle *)
Flatten[u] (* A204202 sequence *)
CROSSREFS
Cf. A204201.
Sequence in context: A316895 A100030 A029603 * A336924 A025124 A030996
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Jan 12 2012
STATUS
approved