login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A261719
Number T(n,k) of partitions of n where each part i is marked with a word of length i over a k-ary alphabet whose letters appear in alphabetical order and all k letters occur at least once in the partition; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
16
1, 0, 1, 0, 2, 3, 0, 3, 12, 10, 0, 5, 40, 81, 47, 0, 7, 104, 396, 544, 246, 0, 11, 279, 1751, 4232, 4350, 1602, 0, 15, 654, 6528, 25100, 44475, 36744, 11481, 0, 22, 1577, 23892, 136516, 369675, 512787, 352793, 95503, 0, 30, 3560, 80979, 666800, 2603670, 5413842, 6170486, 3641992, 871030
OFFSET
0,5
COMMENTS
T(n,k) is defined for n,k >= 0. The triangle contains only the terms with k<=n. T(n,k) = 0 for k>n.
LINKS
FORMULA
T(n,k) = Sum_{i=0..k} (-1)^i * C(k,i) * A261718(n,k-i).
EXAMPLE
A(3,2) = 12: 3aab, 3abb, 2aa1b, 2ab1a, 2ab1b, 2bb1a, 1a1a1b, 1a1b1a, 1a1b1b, 1b1a1a, 1b1a1b, 1b1b1a.
Triangle T(n,k) begins:
1
0, 1;
0, 2, 3;
0, 3, 12, 10;
0, 5, 40, 81, 47;
0, 7, 104, 396, 544, 246;
0, 11, 279, 1751, 4232, 4350, 1602;
0, 15, 654, 6528, 25100, 44475, 36744, 11481;
0, 22, 1577, 23892, 136516, 369675, 512787, 352793, 95503;
...
MAPLE
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1, k)+`if`(i>n, 0, b(n-i, i, k)*binomial(i+k-1, k-1))))
end:
T:= (n, k)-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k):
seq(seq(T(n, k), k=0..n), n=0..10);
MATHEMATICA
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1, k] + If[i > n, 0, b[n - i, i, k]*Binomial[i + k - 1, k - 1]]]]; T[n_, k_] := Sum[b[n, n, k - i]*(-1)^i*Binomial[k, i], {i, 0, k}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 21 2017, translated from Maple *)
CROSSREFS
Columns k=0-10 give: A000007, A000041 (for n>0), A293366, A293367, A293368, A293369, A293370, A293371, A293372, A293373, A293374.
Row sums give A035341.
Main diagonal gives A005651.
T(2n,n) gives A261732.
Cf. A060642, A261718, A261781 (same for compositions).
Sequence in context: A194365 A216217 A253283 * A137663 A370983 A257740
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Aug 29 2015
STATUS
approved