The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A253283 Triangle read by rows: coefficients of the partial fraction decomposition of [d^n/dx^n] (x/(1-x))^n/n!. 7
 1, 0, 1, 0, 2, 3, 0, 3, 12, 10, 0, 4, 30, 60, 35, 0, 5, 60, 210, 280, 126, 0, 6, 105, 560, 1260, 1260, 462, 0, 7, 168, 1260, 4200, 6930, 5544, 1716, 0, 8, 252, 2520, 11550, 27720, 36036, 24024, 6435, 0, 9, 360, 4620, 27720, 90090, 168168, 180180, 102960, 24310 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS The rows give (up to sign) the coefficients in the expansion of the integer-valued polynomial (x+1)^2*(x+2)^2*(x+3)^2*...*(x+n)^2*(x+n+1) / (n!*(n+1)!) in the basis made of the binomial(x+i,i). - F. Chapoton, Oct 31 2022 This is related to the cluster fans of type B (see Fomin and Zelevinsky reference) - F. Chapoton, Nov 17 2022. LINKS Seiichi Manyama, Rows n = 0..139, flattened F. Chapoton Enumerative Properties of Generalized Associahedra, Sém. Loth. Comb. B51b (2004). Mark Dukes and Chris D. White, Web Matrices: Structural Properties and Generating Combinatorial Identities, arXiv:1603.01589 [math.CO], 2016. Mark Dukes and Chris D. White, Web Matrices: Structural Properties and Generating Combinatorial Identities, Electronic Journal Of Combinatorics, 23(1) (2016), #P1.45. S. Fomin and A. Zelevinsky Y-systems and generalized associahedra, Ann. of Math. (2) 158 (2003), no. 3. Yunlong Shen and Lixin Shen, Orthogonal Fourier-Mellin moments for invariant pattern recognition, J. Opt. Soc. Am. A 11 (6) (1994) p 1748-1757, eq. (6). FORMULA The exponential generating functions for the rows of the square array L(n,k) = ((n+k)!/n!)*C(n+k-1,n-1) (associated to the unsigned Lah numbers) are given by R_n(x) = Sum_{k=0..n} T(n,k)/(x-1)^(n+k). T(n,k) = C(n,k)*C(n+k-1,k-1). Sum_{k=0..n} T(n,k) = (-1)^n*hypergeom([-n,n],[1],2)) = (-1)^n*A182626(n). Row generating function: Sum_{k>=1} T(n,k)*z^k = z*n* 2F1(1-n,n+1 ; 2; -z). - R. J. Mathar, Dec 18 2016 From Peter Bala, Feb 22 2017: (Start) G.f.: (1/2)*( 1 + (1 - t)/sqrt(1 - 2*(2*x + 1)*t + t^2) ) = 1 + x*t + (2*x + 3*x^2)*t^2 + (3*x + 12*x^2 + 10*x^3)*t^3 + .... n-th row polynomial R(n,x) = (1/2)*(LegendreP(n, 2*x + 1) - LegendreP(n-1, 2*x + 1)) for n >= 1. The row polynomials are the black diamond product of the polynomials x^n and x^(n+1) (see Dukes and White 2016 for the definition of this product). exp(Sum_{n >= 1} R(n,x)*t^n/n) = 1 + x*t + x*(1 + 2*x)*t^2 + x*(1 + 5*x + 5*x^2)*t^3 + ... is a g.f. for A033282, but with a different offset. The polynomials P(n,x) := (-1)^n/n!*x^(2*n)*(d/dx)^n(1 + 1/x)^n begin 1, 3 + 2*x , 10 + 12*x + 3*x^2, ... and are the row polynomials for the row reverse of this triangle. (End) Let Q(n, x) = Sum_{j=0..n} (-1)^(n - j)*A269944(n, j)*x^(2*j - 1) and P(x, y) = (LegendreP(x, 2*y + 1) - LegendreP(x-1, 2*y + 1)) / 2 (see Peter Bala above). Then n!*(n - 1)!*[y^n] P(x, y) = Q(n, x) for n >= 1. - Peter Luschny, Oct 31 2022 EXAMPLE [1] [0, 1] [0, 2, 3] [0, 3, 12, 10] [0, 4, 30, 60, 35] [0, 5, 60, 210, 280, 126] [0, 6, 105, 560, 1260, 1260, 462] [0, 7, 168, 1260, 4200, 6930, 5544, 1716] . R_0(x) = 1/(x-1)^0. R_1(x) = 0/(x-1)^1 + 1/(x-1)^2. R_2(x) = 0/(x-1)^2 + 2/(x-1)^3 + 3/(x-1)^4. R_3(x) = 0/(x-1)^3 + 3/(x-1)^4 + 12/(x-1)^5 + 10/(x-1)^6. Then k!*[x^k] R_n(x) is A001286(k+2) and A001754(k+3) for n = 2, 3 respectively. MAPLE T_row := proc(n) local egf, k, F, t; if n=0 then RETURN(1) fi; egf := (x/(1-x))^n/n!; t := diff(egf, [x\$n]); F := convert(t, parfrac, x); # print(seq(k!*coeff(series(F, x, 20), x, k), k=0..7)); # gives A000142, A001286, A001754, A001755, A001777, ... seq(coeff(F, (x-1)^(-k)), k=n..2*n) end: seq(print(T_row(n)), n=0..7); # 2nd version by R. J. Mathar, Dec 18 2016: A253283 := proc(n, k) binomial(n, k)*binomial(n+k-1, k-1) ; end proc: MATHEMATICA Table[Binomial[n, k] Binomial[n + k - 1, k - 1], {n, 0, 9}, {k, 0, n}] // Flatten (* Michael De Vlieger, Feb 22 2017 *) PROG (PARI) T(n, k) = binomial(n, k)*binomial(n+k-1, k-1); tabl(nn) = for(n=0, nn, for (k=0, n, print1(T(n, k), ", ")); print); \\ Michel Marcus, Apr 29 2018 CROSSREFS T(n, n) = C(2*n-1, n) = A001700(n-1). T(n, n-1) = A005430(n-1) for n >= 1. T(n, n-2) = A051133(n-2) for n >= 2. T(n, 2) = A027480(n-1) for n >= 2. T(2*n, n) = A208881(n) for n >= 0. Cf. A000142, A001286, A001754, A001755, A001777, A182626, A266732 (row k=3), A008316, A033282, A063007, A345013, A269944. Sequence in context: A316607 A194365 A216217 * A261719 A137663 A257740 Adjacent sequences: A253280 A253281 A253282 * A253284 A253285 A253286 KEYWORD nonn,tabl AUTHOR Peter Luschny, Mar 20 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 8 06:47 EST 2022. Contains 358673 sequences. (Running on oeis4.)