login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A253284
Triangle read by rows, T(n,k) = (k+1)*(n+1)!*(n+k)!/((k+1)!^2*(n-k)!) with n >= 0 and 0 <= k <= n.
1
1, 2, 2, 6, 18, 12, 24, 144, 240, 120, 120, 1200, 3600, 4200, 1680, 720, 10800, 50400, 100800, 90720, 30240, 5040, 105840, 705600, 2116800, 3175200, 2328480, 665280, 40320, 1128960, 10160640, 42336000, 93139200, 111767040, 69189120, 17297280
OFFSET
0,2
COMMENTS
G_n(x) = - Sum_{k=0..n} T(n,k)/(x-1)^(n+k+1) are generating functions, for n=0 of A000012, for n=1 of A002378, for n=2 of A083374 (with offset 0) and for n=3 for A253285. In general G_n(x) is the generating function of the sequence k -> ((n+k)!/k!)*C(n+k-1,k-1). These sequences are associated with the rows of the square array of unsigned Lah numbers (compare A253283 for the columns).
FORMULA
T(n,k) = (n+1)!*binomial(n+k,n)*binomial(n,k)/(k+1).
T(n,k) = (n+1)!*A088617(n,k).
T(n,0) = n! = A000142(n).
T(n,1) = A001804(n+1) for n>0.
T(n,n) = (2*n)!/n! = A001813(n).
Sum_{k=0..n} T(n,k) = (n+1)!*hypergeom([-n, n+1], [2], -1) = (n+1)!*A006318(n).
EXAMPLE
Triangle begins:
1;
2, 2;
6, 18, 12;
24, 144, 240, 120;
120, 1200, 3600, 4200, 1680;
720, 10800, 50400, 100800, 90720, 30240;
5040, 105840, 705600, 2116800, 3175200, 2328480, 665280.
MAPLE
T := (n, k) -> ((k+1)*(n+1)!*(n+k)!)/((k+1)!^2*(n-k)!);
for n from 0 to 6 do seq(T(n, k), k=0..n) od;
MATHEMATICA
f[n_] := Rest@ Flatten@ Reap@ Block[{i, k, t}, For[i = 0, i <= n, i++, For[k = 0, k <= i, k++, Sow[(i + 1)!*Binomial[i + k, i]*Binomial[i, k]/(k + 1)]]]]; f@ 7 (* Michael De Vlieger, Mar 23 2015 *)
PROG
(PARI) tabl(nn) = {for (n=0, nn, for (k=0, n, print1((n+1)!*binomial(n+k, n)*binomial(n, k)/(k+1), ", "); ); print(); ); } \\ Michel Marcus, Mar 23 2015
(Magma) /* As triangle: */ [[(k + 1)*Factorial(n + 1)*Factorial(n + k)/(Factorial(k + 1)^2*Factorial(n - k)): k in [0..n]]: n in [0..10]]; // Bruno Berselli, Mar 23 2015
KEYWORD
nonn,tabl,easy
AUTHOR
Peter Luschny, Mar 23 2015
STATUS
approved