login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows, T(n,k) = (k+1)*(n+1)!*(n+k)!/((k+1)!^2*(n-k)!) with n >= 0 and 0 <= k <= n.
1

%I #26 Sep 08 2022 08:46:10

%S 1,2,2,6,18,12,24,144,240,120,120,1200,3600,4200,1680,720,10800,50400,

%T 100800,90720,30240,5040,105840,705600,2116800,3175200,2328480,665280,

%U 40320,1128960,10160640,42336000,93139200,111767040,69189120,17297280

%N Triangle read by rows, T(n,k) = (k+1)*(n+1)!*(n+k)!/((k+1)!^2*(n-k)!) with n >= 0 and 0 <= k <= n.

%C G_n(x) = - Sum_{k=0..n} T(n,k)/(x-1)^(n+k+1) are generating functions, for n=0 of A000012, for n=1 of A002378, for n=2 of A083374 (with offset 0) and for n=3 for A253285. In general G_n(x) is the generating function of the sequence k -> ((n+k)!/k!)*C(n+k-1,k-1). These sequences are associated with the rows of the square array of unsigned Lah numbers (compare A253283 for the columns).

%F T(n,k) = (n+1)!*binomial(n+k,n)*binomial(n,k)/(k+1).

%F T(n,k) = (n+1)!*A088617(n,k).

%F T(n,0) = n! = A000142(n).

%F T(n,1) = A001804(n+1) for n>0.

%F T(n,n) = (2*n)!/n! = A001813(n).

%F Sum_{k=0..n} T(n,k) = (n+1)!*hypergeom([-n, n+1], [2], -1) = (n+1)!*A006318(n).

%e Triangle begins:

%e 1;

%e 2, 2;

%e 6, 18, 12;

%e 24, 144, 240, 120;

%e 120, 1200, 3600, 4200, 1680;

%e 720, 10800, 50400, 100800, 90720, 30240;

%e 5040, 105840, 705600, 2116800, 3175200, 2328480, 665280.

%p T := (n,k) -> ((k+1)*(n+1)!*(n+k)!)/((k+1)!^2*(n-k)!);

%p for n from 0 to 6 do seq(T(n,k), k=0..n) od;

%t f[n_] := Rest@ Flatten@ Reap@ Block[{i, k, t}, For[i = 0, i <= n, i++, For[k = 0, k <= i, k++, Sow[(i + 1)!*Binomial[i + k, i]*Binomial[i, k]/(k + 1)]]]]; f@ 7 (* _Michael De Vlieger_, Mar 23 2015 *)

%o (PARI) tabl(nn) = {for (n=0, nn, for (k=0, n, print1((n+1)!*binomial(n+k,n)*binomial(n,k)/(k+1), ", ");); print(););} \\ _Michel Marcus_, Mar 23 2015

%o (Magma) /* As triangle: */ [[(k + 1)*Factorial(n + 1)*Factorial(n + k)/(Factorial(k + 1)^2*Factorial(n - k)): k in [0..n]]: n in [0..10]]; // _Bruno Berselli_, Mar 23 2015

%Y Cf. A000142, A001804, A001813, A002378, A006318, A083374, A088617, A253283, A253285.

%K nonn,tabl,easy

%O 0,2

%A _Peter Luschny_, Mar 23 2015