The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A216217 Smallest k such that 6^n - 2*k*3^n - 1 and 6^n - 2*k*3^n + 1 are twin primes or 0 if no solution, n > 1. 1
1, 2, 3, 0, 3, 11, 33, 9, 26, 6, 34, 138, 51, 19, 33, 246, 66, 31, 167, 73, 13, 716, 138, 148, 138, 339, 447, 41, 131, 41, 9, 178, 778, 337, 543, 2154, 213, 1216, 454, 183, 678, 442, 157, 381, 297, 1476, 54, 1201, 1942, 1566, 572, 3708, 3261, 3672, 1087, 306 (list; graph; refs; listen; history; text; internal format)
OFFSET
2,2
COMMENTS
Conjecture: there is only one zero term: a(5) = 0.
The PFGW script computes 2*a(n).
LINKS
EXAMPLE
6^2 - 2*1*3^2 - 1 = 17, 17 and 19 twin primes so a(2)=1.
6^3 - 2*2*3^3 - 1 = 107, 107 and 109 twin primes so a(3)=2.
6^4 - 2*3*3^4 - 1 = 809, 809 and 811 twin primes so a(4)=3.
6^5 - 2*k*3^5 - 1 and 6^5 - 2*k*3^5 + 1 for k=1 to 30 have no twin prime solution so a(5)=0.
MATHEMATICA
Table[k = 0; While[k++; p = 6^n - 2*k*3^n - 1; p > 0 && ! (PrimeQ[p] && PrimeQ[p + 2])]; If[p <= 0, 0, k], {n, 2, 50}] (* T. D. Noe, Mar 15 2013 *)
PROG
(PFGW & Scriptify)
PFGW64 -lout.txt -f in.txt
in.txt file :
SCRIPT
DIM k
DIM n, 1
DIMS t
LABEL loop1
SET n, n+1
IF n>400 THEN END
SET k, 0
LABEL loop2
SET k, k+2
SETS t, %d, %d\,; n; k
PRP 6^n-k*3^n-1, t
IF ISPRP THEN GOTO a
GOTO loop2
LABEL a
SETS t, %d, %d\,; n; k
PRP 6^n-k*3^n+1, t
IF ISPRP THEN GOTO loop1
GOTO loop2
CROSSREFS
Cf. A205322 (similar, but powers of 2).
Sequence in context: A180188 A316607 A194365 * A253283 A261719 A137663
KEYWORD
nonn
AUTHOR
Pierre CAMI, Mar 13 2013
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 20 19:00 EDT 2024. Contains 372720 sequences. (Running on oeis4.)