login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A293373
Number of partitions of n where each part i is marked with a word of length i over a nonary alphabet whose letters appear in alphabetical order and all nine letters occur at least once in the partition.
2
871030, 41488902, 1106315145, 22148014950, 366764207877, 5369282570448, 71433531608103, 887892874465104, 10433233718235522, 117558189248146187, 1278057588056171991, 13515236446777067727, 139538852470920866367, 1413457490580676488090, 14081562892529164704060
OFFSET
9,1
LINKS
FORMULA
a(n) ~ c * 9^n, where c = 3.23950351986835655716873222462341048089067679826... - Vaclav Kotesovec, Oct 11 2017
MAPLE
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1, k)+`if`(i>n, 0, b(n-i, i, k)*binomial(i+k-1, k-1))))
end:
a:= n-> (k-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k))(9):
seq(a(n), n=9..30);
CROSSREFS
Column k=9 of A261719.
Sequence in context: A034609 A182450 A362793 * A306868 A223886 A204509
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 07 2017
STATUS
approved