Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Oct 11 2017 06:45:08
%S 871030,41488902,1106315145,22148014950,366764207877,5369282570448,
%T 71433531608103,887892874465104,10433233718235522,117558189248146187,
%U 1278057588056171991,13515236446777067727,139538852470920866367,1413457490580676488090,14081562892529164704060
%N Number of partitions of n where each part i is marked with a word of length i over a nonary alphabet whose letters appear in alphabetical order and all nine letters occur at least once in the partition.
%H Alois P. Heinz, <a href="/A293373/b293373.txt">Table of n, a(n) for n = 9..1000</a>
%F a(n) ~ c * 9^n, where c = 3.23950351986835655716873222462341048089067679826... - _Vaclav Kotesovec_, Oct 11 2017
%p b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
%p b(n, i-1, k)+`if`(i>n, 0, b(n-i, i, k)*binomial(i+k-1, k-1))))
%p end:
%p a:= n-> (k-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k))(9):
%p seq(a(n), n=9..30);
%Y Column k=9 of A261719.
%K nonn
%O 9,1
%A _Alois P. Heinz_, Oct 07 2017