login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257740
Number T(n,k) of multisets of nonempty words with a total of n letters over k-ary alphabet such that all k letters occur at least once in the multiset; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
16
1, 0, 1, 0, 2, 3, 0, 3, 14, 13, 0, 5, 49, 114, 73, 0, 7, 148, 672, 1028, 501, 0, 11, 427, 3334, 9182, 10310, 4051, 0, 15, 1170, 15030, 66584, 129485, 114402, 37633, 0, 22, 3150, 63978, 428653, 1285815, 1918083, 1394414, 394353, 0, 30, 8288, 261880, 2557972, 11117600, 24917060, 30044014, 18536744, 4596553
OFFSET
0,5
COMMENTS
Row n is the inverse binomial transform of the n-th row of array A144074, which has the Euler transform of the powers of k in column k.
LINKS
FORMULA
T(n,k) = Sum_{i=0..k} (-1)^i * C(k,i) * A144074(n,k-i).
EXAMPLE
T(2,2) = 3: {ab}, {ba}, {a,b}.
T(3,2) = 14: {aab}, {aba}, {abb}, {baa}, {bab}, {bba}, {a,ab}, {a,ba}, {a,bb}, {aa,b}, {ab,b}, {b,ba}, {a,a,b}, {a,b,b}.
Triangle T(n,k) begins:
1;
0, 1;
0, 2, 3;
0, 3, 14, 13;
0, 5, 49, 114, 73;
0, 7, 148, 672, 1028, 501;
0, 11, 427, 3334, 9182, 10310, 4051;
0, 15, 1170, 15030, 66584, 129485, 114402, 37633;
0, 22, 3150, 63978, 428653, 1285815, 1918083, 1394414, 394353;
...
MAPLE
A:= proc(n, k) option remember; `if`(n=0, 1, add(add(
d*k^d, d=numtheory[divisors](j)) *A(n-j, k), j=1..n)/n)
end:
T:= (n, k)-> add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k):
seq(seq(T(n, k), k=0..n), n=0..10);
MATHEMATICA
A[n_, k_] := A[n, k] = If[n == 0, 1, Sum[DivisorSum[j, #*k^#&]*A[n - j, k], {j, 1, n}]/n]; T[n_, k_] := Sum[A[n, k - i]*(-1)^i*Binomial[k, i], {i, 0, k}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 23 2017, adapted from Maple *)
CROSSREFS
Columns k=0-10 give: A000007, A000041 (for n>0), A261043, A320213, A320214, A320215, A320216, A320217, A320218, A320219, A320220.
Row sums give A257741.
Main diagonal gives A000262.
T(2n,n) gives A257742.
Sequence in context: A261719 A137663 A370983 * A161628 A244119 A122059
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, May 06 2015
EXTENSIONS
Name changed by Alois P. Heinz, Sep 21 2018
STATUS
approved