The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A257740 Number T(n,k) of multisets of nonempty words with a total of n letters over k-ary alphabet such that all k letters occur at least once in the multiset; triangle T(n,k), n>=0, 0<=k<=n, read by rows. 16
 1, 0, 1, 0, 2, 3, 0, 3, 14, 13, 0, 5, 49, 114, 73, 0, 7, 148, 672, 1028, 501, 0, 11, 427, 3334, 9182, 10310, 4051, 0, 15, 1170, 15030, 66584, 129485, 114402, 37633, 0, 22, 3150, 63978, 428653, 1285815, 1918083, 1394414, 394353, 0, 30, 8288, 261880, 2557972, 11117600, 24917060, 30044014, 18536744, 4596553 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Row n is the inverse binomial transform of the n-th row of array A144074, which has the Euler transform of the powers of k in column k. LINKS Alois P. Heinz, Rows n = 0..140, flattened FORMULA T(n,k) = Sum_{i=0..k} (-1)^i * C(k,i) * A144074(n,k-i). EXAMPLE T(2,2) = 3: {ab}, {ba}, {a,b}. T(3,2) = 14: {aab}, {aba}, {abb}, {baa}, {bab}, {bba}, {a,ab}, {a,ba}, {a,bb}, {aa,b}, {ab,b}, {b,ba}, {a,a,b}, {a,b,b}. Triangle T(n,k) begins: 1; 0, 1; 0, 2, 3; 0, 3, 14, 13; 0, 5, 49, 114, 73; 0, 7, 148, 672, 1028, 501; 0, 11, 427, 3334, 9182, 10310, 4051; 0, 15, 1170, 15030, 66584, 129485, 114402, 37633; 0, 22, 3150, 63978, 428653, 1285815, 1918083, 1394414, 394353; ... MAPLE A:= proc(n, k) option remember; `if`(n=0, 1, add(add( d*k^d, d=numtheory[divisors](j)) *A(n-j, k), j=1..n)/n) end: T:= (n, k)-> add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k): seq(seq(T(n, k), k=0..n), n=0..10); MATHEMATICA A[n_, k_] := A[n, k] = If[n == 0, 1, Sum[DivisorSum[j, #*k^#&]*A[n - j, k], {j, 1, n}]/n]; T[n_, k_] := Sum[A[n, k - i]*(-1)^i*Binomial[k, i], {i, 0, k}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 23 2017, adapted from Maple *) CROSSREFS Columns k=0-10 give: A000007, A000041 (for n>0), A261043, A320213, A320214, A320215, A320216, A320217, A320218, A320219, A320220. Row sums give A257741. Main diagonal gives A000262. T(2n,n) gives A257742. Cf. A144074, A319501. Sequence in context: A253283 A261719 A137663 * A161628 A244119 A122059 Adjacent sequences: A257737 A257738 A257739 * A257741 A257742 A257743 KEYWORD nonn,tabl AUTHOR Alois P. Heinz, May 06 2015 EXTENSIONS Name changed by Alois P. Heinz, Sep 21 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 04:31 EST 2023. Contains 367574 sequences. (Running on oeis4.)