OFFSET
1,2
COMMENTS
This is the case k = n of b(n,k) = n*(n+1)*(n+2)*(k*(n-1)+4)/24, where b(n,k) is the n-th hypersolid number in 4 dimensions generated from an arithmetical progression with the first term 1 and common difference k. Therefore, the sequence is the main diagonal of the Table 3 in Sardelis et al. paper (see Links field).
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..1000
D. A. Sardelis and T. M. Valahas, On Multidimensional Pythagorean Numbers, arXiv:0805.4070v1 [math.GM], 2008.
Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
FORMULA
G.f.: x*(1 + 4*x^2)/(1 - x)^6.
E.g.f.: (24*x + 48*x^2 + 40*x^3 + 12*x^4 + x^5)*exp(x)/24. - G. C. Greubel, Nov 23 2017
a(n) = A261721(n,n-1). - Alois P. Heinz, Apr 15 2020
MATHEMATICA
Table[n (n + 1) (n + 2) (n^2 - n + 4)/24, {n, 40}]
LinearRecurrence[{6, -15, 20, -15, 6, -1}, {1, 6, 25, 80, 210, 476}, 40] (* Harvey P. Dale, Mar 19 2022 *)
PROG
(PARI) vector(40, n, n*(n+1)*(n+2)*(n^2-n+4)/24) \\ Bruno Berselli, Apr 15 2015
(Magma) [n*(n + 1)*(n + 2)*(n^2 - n + 4)/24: n in [1..30]]; // G. C. Greubel, Nov 23 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Luciano Ancora, Apr 14 2015
STATUS
approved