login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A256859
a(n) = n*(n + 1)*(n + 2)*(n^2 - n + 4)/24.
6
1, 6, 25, 80, 210, 476, 966, 1800, 3135, 5170, 8151, 12376, 18200, 26040, 36380, 49776, 66861, 88350, 115045, 147840, 187726, 235796, 293250, 361400, 441675, 535626, 644931, 771400, 916980, 1083760, 1273976, 1490016, 1734425, 2009910, 2319345, 2665776, 3052426
OFFSET
1,2
COMMENTS
This is the case k = n of b(n,k) = n*(n+1)*(n+2)*(k*(n-1)+4)/24, where b(n,k) is the n-th hypersolid number in 4 dimensions generated from an arithmetical progression with the first term 1 and common difference k. Therefore, the sequence is the main diagonal of the Table 3 in Sardelis et al. paper (see Links field).
LINKS
D. A. Sardelis and T. M. Valahas, On Multidimensional Pythagorean Numbers, arXiv:0805.4070v1 [math.GM], 2008.
FORMULA
G.f.: x*(1 + 4*x^2)/(1 - x)^6.
a(n) = 4*A000389(n+2) + A000389(n+4). - Bruno Berselli, Apr 15 2015
E.g.f.: (24*x + 48*x^2 + 40*x^3 + 12*x^4 + x^5)*exp(x)/24. - G. C. Greubel, Nov 23 2017
a(n) = A261721(n,n-1). - Alois P. Heinz, Apr 15 2020
MATHEMATICA
Table[n (n + 1) (n + 2) (n^2 - n + 4)/24, {n, 40}]
LinearRecurrence[{6, -15, 20, -15, 6, -1}, {1, 6, 25, 80, 210, 476}, 40] (* Harvey P. Dale, Mar 19 2022 *)
PROG
(PARI) vector(40, n, n*(n+1)*(n+2)*(n^2-n+4)/24) \\ Bruno Berselli, Apr 15 2015
(Magma) [n*(n + 1)*(n + 2)*(n^2 - n + 4)/24: n in [1..30]]; // G. C. Greubel, Nov 23 2017
CROSSREFS
Cf. similar sequences of the form binomial(n+k-2,k-1)+n*binomial(n+k-2,k): A006000 (k=2); A257055 (k=3); this sequence (k=4); A256860 (k=5); A256861 (k=6).
Sequence in context: A281157 A346975 A354396 * A133714 A164271 A233698
KEYWORD
nonn,easy
AUTHOR
Luciano Ancora, Apr 14 2015
STATUS
approved