OFFSET
0,5
FORMULA
a(0) = 1; a(n) = -Sum_{k=1..n} binomial(n-1,k-1) * Stirling2(k,3) * a(n-k).
a(n) = Sum_{k=0..floor(n/3)} (3*k)! * Stirling2(n,3*k)/((-6)^k * k!).
MATHEMATICA
With[{nn=30}, CoefficientList[Series[Exp[-(Exp[x]-1)^3/6], {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Dec 02 2023 *)
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-(exp(x)-1)^3/6)))
(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=-sum(j=1, i, binomial(i-1, j-1)*stirling(j, 3, 2)*v[i-j+1])); v;
(PARI) a(n) = sum(k=0, n\3, (3*k)!*stirling(n, 3*k, 2)/((-6)^k*k!));
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, May 25 2022
STATUS
approved