Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #32 Sep 08 2022 08:46:12
%S 1,6,25,80,210,476,966,1800,3135,5170,8151,12376,18200,26040,36380,
%T 49776,66861,88350,115045,147840,187726,235796,293250,361400,441675,
%U 535626,644931,771400,916980,1083760,1273976,1490016,1734425,2009910,2319345,2665776,3052426
%N a(n) = n*(n + 1)*(n + 2)*(n^2 - n + 4)/24.
%C This is the case k = n of b(n,k) = n*(n+1)*(n+2)*(k*(n-1)+4)/24, where b(n,k) is the n-th hypersolid number in 4 dimensions generated from an arithmetical progression with the first term 1 and common difference k. Therefore, the sequence is the main diagonal of the Table 3 in Sardelis et al. paper (see Links field).
%H G. C. Greubel, <a href="/A256859/b256859.txt">Table of n, a(n) for n = 1..1000</a>
%H D. A. Sardelis and T. M. Valahas, <a href="http://arxiv.org/abs/0805.4070v1">On Multidimensional Pythagorean Numbers</a>, arXiv:0805.4070v1 [math.GM], 2008.
%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (6,-15,20,-15,6,-1).
%F G.f.: x*(1 + 4*x^2)/(1 - x)^6.
%F a(n) = 4*A000389(n+2) + A000389(n+4). - _Bruno Berselli_, Apr 15 2015
%F E.g.f.: (24*x + 48*x^2 + 40*x^3 + 12*x^4 + x^5)*exp(x)/24. - _G. C. Greubel_, Nov 23 2017
%F a(n) = A261721(n,n-1). - _Alois P. Heinz_, Apr 15 2020
%t Table[n (n + 1) (n + 2) (n^2 - n + 4)/24, {n, 40}]
%t LinearRecurrence[{6,-15,20,-15,6,-1},{1,6,25,80,210,476},40] (* _Harvey P. Dale_, Mar 19 2022 *)
%o (PARI) vector(40, n, n*(n+1)*(n+2)*(n^2-n+4)/24) \\ _Bruno Berselli_, Apr 15 2015
%o (Magma) [n*(n + 1)*(n + 2)*(n^2 - n + 4)/24: n in [1..30]]; // _G. C. Greubel_, Nov 23 2017
%Y Cf. A000389, A261721.
%Y Cf. similar sequences of the form binomial(n+k-2,k-1)+n*binomial(n+k-2,k): A006000 (k=2); A257055 (k=3); this sequence (k=4); A256860 (k=5); A256861 (k=6).
%K nonn,easy
%O 1,2
%A _Luciano Ancora_, Apr 14 2015