login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number A(n,k) of partitions of n where each part i is marked with a word of length i over a k-ary alphabet whose letters appear in alphabetical order; square array A(n,k), n>=0, k>=0, read by antidiagonals.
14

%I #19 Sep 03 2018 19:51:11

%S 1,1,0,1,1,0,1,2,2,0,1,3,7,3,0,1,4,15,18,5,0,1,5,26,55,50,7,0,1,6,40,

%T 124,216,118,11,0,1,7,57,235,631,729,301,15,0,1,8,77,398,1470,2780,

%U 2621,684,22,0,1,9,100,623,2955,8001,12954,8535,1621,30,0

%N Number A(n,k) of partitions of n where each part i is marked with a word of length i over a k-ary alphabet whose letters appear in alphabetical order; square array A(n,k), n>=0, k>=0, read by antidiagonals.

%H Alois P. Heinz, <a href="/A261718/b261718.txt">Antidiagonals n = 0..140, flattened</a>

%F A(n,k) = Sum_{i=0..k} C(k,i) * A261719(n,k-i).

%e A(3,2) = 18: 3aaa, 3aab, 3abb, 3bbb, 2aa1a, 2aa1b, 2ab1a, 2ab1b, 2bb1a, 2bb1b, 1a1a1a, 1a1a1b, 1a1b1a, 1a1b1b, 1b1a1a, 1b1a1b, 1b1b1a, 1b1b1b.

%e Square array A(n,k) begins:

%e 1, 1, 1, 1, 1, 1, 1, 1, ...

%e 0, 1, 2, 3, 4, 5, 6, 7, ...

%e 0, 2, 7, 15, 26, 40, 57, 77, ...

%e 0, 3, 18, 55, 124, 235, 398, 623, ...

%e 0, 5, 50, 216, 631, 1470, 2955, 5355, ...

%e 0, 7, 118, 729, 2780, 8001, 19158, 40299, ...

%e 0, 11, 301, 2621, 12954, 45865, 130453, 317905, ...

%e 0, 15, 684, 8535, 55196, 241870, 820554, 2323483, ...

%p b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,

%p b(n, i-1, k)+`if`(i>n, 0, b(n-i, i, k)*binomial(i+k-1, k-1))))

%p end:

%p A:= (n, k)-> b(n, n, k):

%p seq(seq(A(n, d-n), n=0..d), d=0..12);

%t b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1, k] + If[i > n, 0, b[n - i, i, k]*Binomial[i + k - 1, k - 1]]]]; A[n_, k_] := b[n, n, k]; Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 12}] // Flatten (* _Jean-François Alcover_, Feb 22 2016, after _Alois P. Heinz_ *)

%Y Columns k=0-10 give: A000007, A000041, A074141, A261737, A261738, A261739, A261740, A261741, A261742, A261743, A261744.

%Y Rows n=0-2 give: A000012, A001477, A005449.

%Y Main diagonal gives A209668.

%Y Cf. A144064, A261719, A261780.

%K nonn,tabl

%O 0,8

%A _Alois P. Heinz_, Aug 29 2015