The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A261737 Number of partitions of n where each part i is marked with a word of length i over a ternary alphabet whose letters appear in alphabetical order. 3
 1, 3, 15, 55, 216, 729, 2621, 8535, 28689, 91749, 296538, 929712, 2939063, 9093255, 28257123, 86681608, 266368959, 811501848, 2475331535, 7505567037, 22772955015, 68828023329, 208079886258, 627418618533, 1892181244828, 5696253823476, 17149663331259 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..1000 FORMULA a(n) ~ c * 3^n, where c = Product_{k>=2} 1/(1 - (k+1)*(k+2)/(2*3^k)) = 6.84620607349852135789816336867607014231681538613599316638081993041973716978... . - Vaclav Kotesovec, Nov 15 2016, updated May 10 2021 G.f.: Product_{k>=1} 1 / (1 - binomial(k+2,2)*x^k). - Ilya Gutkovskiy, May 09 2021 MAPLE b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i)*binomial(i+2, 2)))) end: a:= n-> b(n\$2): seq(a(n), n=0..30); MATHEMATICA b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1] + If[i > n, 0, b[n - i, i]*Binomial[i + 2, 2]]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 30}] {* Jean-François Alcover, May 24 2018, translated from Maple *) CROSSREFS Column k=3 of A261718. Cf. A293367. Sequence in context: A286185 A152896 A007973 * A015249 A084152 A084175 Adjacent sequences: A261734 A261735 A261736 * A261738 A261739 A261740 KEYWORD nonn AUTHOR Alois P. Heinz, Aug 30 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 16 12:15 EDT 2024. Contains 373429 sequences. (Running on oeis4.)