login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A087436
Number of odd prime factors of n, counted with repetitions.
43
0, 0, 1, 0, 1, 1, 1, 0, 2, 1, 1, 1, 1, 1, 2, 0, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 1, 2, 1, 0, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 1, 3, 1, 1, 1, 2, 2, 2, 1, 1, 3, 2, 1, 2, 1, 1, 2, 1, 1, 3, 0, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 3, 1, 2, 2, 1, 1, 4, 1, 1, 2, 2, 1, 2, 1, 1, 3, 2, 1, 2, 1, 2, 1, 1, 2, 3, 2, 1, 2
OFFSET
1,9
COMMENTS
Number of parts larger than 1 in the partition with Heinz number n. The Heinz number of an integer partition p = [p_1, p_2, ..., p_r] is defined as Product(p_j-th prime, j=1...r) (concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). Example: a(9) = 2 because the partition with Heinz number 9 (=3*3) is [2,2]. - Emeric Deutsch, Oct 02 2015
Totally additive because both A001222 and A007814 are. a(2) = 0, and a(p) = 1 for odd primes p, a(m*n) = a(m)+a(n) for m, n > 1. - Antti Karttunen, Jul 10 2020
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..65537 (first 1000 terms from G. C. Greubel)
FORMULA
a(n) = A001222(n) - A007814(n).
a(n) = A001222(A000265(n)). - Antti Karttunen, Jul 10 2020
EXAMPLE
a(9) = 2 because 9 = 3*3 has 2 odd prime factors. - Emeric Deutsch, Oct 02 2015
MAPLE
seq(bigomega(n) - padic[ordp](n, 2), n=1..102); # Peter Luschny, Dec 06 2017
MATHEMATICA
Join[{0}, Table[Length[Select[Flatten[Table[#[[1]], {#[[2]]}]&/@ FactorInteger[ n]], OddQ]], {n, 2, 110}]] (* Harvey P. Dale, Feb 01 2013 *)
PROG
(PARI) a(n) = bigomega(n) - valuation(n, 2); \\ Michel Marcus, Sep 10 2019
(PARI) A087436(n) = (bigomega(n>>valuation(n, 2))); \\ Antti Karttunen, Jul 10 2020
CROSSREFS
Cf. A000244 (the first occurrence of each n, and also the positions of records).
Sequence in context: A176564 A237717 A154338 * A340831 A334862 A329801
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Sep 03 2003
STATUS
approved