login
A005085
Sum of 4th powers of primes = 3 mod 4 dividing n.
7
0, 0, 81, 0, 0, 81, 2401, 0, 81, 0, 14641, 81, 0, 2401, 81, 0, 0, 81, 130321, 0, 2482, 14641, 279841, 81, 0, 0, 81, 2401, 0, 81, 923521, 0, 14722, 0, 2401, 81, 0, 130321, 81, 0, 0, 2482, 3418801, 14641, 81, 279841, 4879681, 81, 2401, 0, 81, 0, 0, 81, 14641, 2401, 130402, 0, 12117361, 81, 0, 923521, 2482, 0, 0, 14722, 20151121, 0, 279922
OFFSET
1,3
LINKS
FORMULA
Additive with a(p^e) = p^4 if p = 3 (mod 4), 0 otherwise.
a(n) = A005065(n) - A005081(n) - 16*A059841(n). - Antti Karttunen, Jul 11 2017
MATHEMATICA
Array[DivisorSum[#, #^4 &, And[PrimeQ@ #, Mod[#, 4] == 3] &] &, 69] (* Michael De Vlieger, Jul 11 2017 *)
f[p_, e_] := If[Mod[p, 4] == 3, p^4, 0]; a[n_] := Plus @@ f @@@ FactorInteger[n]; a[1] = 0; Array[a, 100] (* Amiram Eldar, Jun 21 2022 *)
PROG
(Scheme) (define (A005085 n) (if (= 1 n) 0 (+ (if (= 3 (modulo (A020639 n) 4)) (A000583 (A020639 n)) 0) (A005085 (A028234 n))))) ;; Antti Karttunen, Jul 11 2017
(PARI) a(n) = my(f=factor(n)); sum(k=1, #f~, if (((p=f[k, 1])%4) == 3, p^4)); \\ Michel Marcus, Jul 11 2017
KEYWORD
nonn
EXTENSIONS
More terms from Antti Karttunen, Jul 11 2017
STATUS
approved