login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A005068
Sum of 4th powers of odd primes dividing n.
7
0, 0, 81, 0, 625, 81, 2401, 0, 81, 625, 14641, 81, 28561, 2401, 706, 0, 83521, 81, 130321, 625, 2482, 14641, 279841, 81, 625, 28561, 81, 2401, 707281, 706, 923521, 0, 14722, 83521, 3026, 81, 1874161, 130321, 28642, 625, 2825761, 2482, 3418801, 14641, 706, 279841, 4879681, 81, 2401, 625, 83602, 28561, 7890481, 81
OFFSET
1,3
LINKS
FORMULA
Additive with a(p^e) = 0 if p = 2, p^4 otherwise.
From Antti Karttunen, Jul 10 2017: (Start)
a(1) = 0; after which, for even n: a(n) = a(n/2), for odd n: a(n) = A020639(n)^4 + a(A028234(n)).
a(n) = A005065(A000265(n)).
(End)
G.f.: Sum_{k>=2} prime(k)^4 * x^prime(k) / (1 - x^prime(k)). - Ilya Gutkovskiy, Aug 19 2021
MATHEMATICA
Array[DivisorSum[#, #^4 &, And[PrimeQ@ #, OddQ@ #] &] &, 54] (* Michael De Vlieger, Jul 11 2017 *)
f[2, e_] := 0; f[p_, e_] := p^4; a[n_] := Plus @@ f @@@ FactorInteger[n]; a[1] = 0; Array[a, 50] (* Amiram Eldar, Jun 20 2022 *)
PROG
(Scheme) (define (A005068 n) (cond ((= 1 n) 0) ((even? n) (A005068 (/ n 2))) (else (+ (A000583 (A020639 n)) (A005068 (A028234 n)))))) ;; Antti Karttunen, Jul 10 2017
(PARI) a(n) = my(f=factor(n)); sum(k=1, #f~, if (((p=f[k, 1])%2) == 1, p^4)); \\ Michel Marcus, Jul 11 2017
KEYWORD
nonn
EXTENSIONS
More terms from Antti Karttunen, Jul 10 2017
STATUS
approved