login
A005068
Sum of 4th powers of odd primes dividing n.
7
0, 0, 81, 0, 625, 81, 2401, 0, 81, 625, 14641, 81, 28561, 2401, 706, 0, 83521, 81, 130321, 625, 2482, 14641, 279841, 81, 625, 28561, 81, 2401, 707281, 706, 923521, 0, 14722, 83521, 3026, 81, 1874161, 130321, 28642, 625, 2825761, 2482, 3418801, 14641, 706, 279841, 4879681, 81, 2401, 625, 83602, 28561, 7890481, 81
OFFSET
1,3
LINKS
FORMULA
Additive with a(p^e) = 0 if p = 2, p^4 otherwise.
From Antti Karttunen, Jul 10 2017: (Start)
a(1) = 0; after which, for even n: a(n) = a(n/2), for odd n: a(n) = A020639(n)^4 + a(A028234(n)).
a(n) = A005065(A000265(n)).
(End)
G.f.: Sum_{k>=2} prime(k)^4 * x^prime(k) / (1 - x^prime(k)). - Ilya Gutkovskiy, Aug 19 2021
MATHEMATICA
Array[DivisorSum[#, #^4 &, And[PrimeQ@ #, OddQ@ #] &] &, 54] (* Michael De Vlieger, Jul 11 2017 *)
f[2, e_] := 0; f[p_, e_] := p^4; a[n_] := Plus @@ f @@@ FactorInteger[n]; a[1] = 0; Array[a, 50] (* Amiram Eldar, Jun 20 2022 *)
PROG
(Scheme) (define (A005068 n) (cond ((= 1 n) 0) ((even? n) (A005068 (/ n 2))) (else (+ (A000583 (A020639 n)) (A005068 (A028234 n)))))) ;; Antti Karttunen, Jul 10 2017
(PARI) a(n) = my(f=factor(n)); sum(k=1, #f~, if (((p=f[k, 1])%2) == 1, p^4)); \\ Michel Marcus, Jul 11 2017
KEYWORD
nonn
EXTENSIONS
More terms from Antti Karttunen, Jul 10 2017
STATUS
approved