OFFSET
1,2
COMMENTS
Primes are taken without multiplicity, e.g., 12 = 2*2*3, and a(12) = 2^4+3^4 = 97. - Harvey P. Dale, Jul 16 2014
Inverse Möbius transform of n^4 * c(n), where c(n) is the prime characteristic (A010051). - Wesley Ivan Hurt, Jun 22 2024
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..10000
FORMULA
Additive with a(p^e) = p^4.
From Antti Karttunen, Jul 11 2017: (Start)
(End)
G.f.: Sum_{k>=1} prime(k)^4*x^prime(k)/(1 - x^prime(k)). - Ilya Gutkovskiy, Dec 24 2018
a(n) = Sum_{p|n, p prime} p^4. - Wesley Ivan Hurt, Feb 04 2022
a(n) = Sum_{d|n} d^4 * c(d), where c = A010051. - Wesley Ivan Hurt, Jun 22 2024
MAPLE
A005065 := proc(n)
add(d^4, d= numtheory[factorset](n)) ;
end proc;
seq(A005065(n), n=1..40) ; # R. J. Mathar, Nov 08 2011
MATHEMATICA
Join[{0}, Table[Total[Transpose[FactorInteger[n]][[1]]^4], {n, 2, 40}]] (* Harvey P. Dale, Jul 16 2014 *)
Array[DivisorSum[#, #^4 &, PrimeQ] &, 54] (* Michael De Vlieger, Jul 11 2017 *)
PROG
(Scheme) (define (A005065 n) (if (= 1 n) 0 (+ (A000583 (A020639 n)) (A005065 (A028234 n))))) ;; Antti Karttunen, Jul 10 2017
(Python)
from sympy import primefactors
def a(n): return sum(p**4 for p in primefactors(n))
print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jul 11 2017
(PARI) a(n) = my(f=factor(n)); sum(k=1, #f~, f[k, 1]^4); \\ Michel Marcus, Jul 11 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Antti Karttunen, Jul 10 2017
STATUS
approved