login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A005065
Sum of 4th powers of primes dividing n.
20
0, 16, 81, 16, 625, 97, 2401, 16, 81, 641, 14641, 97, 28561, 2417, 706, 16, 83521, 97, 130321, 641, 2482, 14657, 279841, 97, 625, 28577, 81, 2417, 707281, 722, 923521, 16, 14722, 83537, 3026, 97, 1874161, 130337, 28642, 641, 2825761, 2498, 3418801, 14657, 706, 279857, 4879681, 97, 2401, 641, 83602, 28577, 7890481, 97
OFFSET
1,2
COMMENTS
Primes are taken without multiplicity, e.g., 12 = 2*2*3, and a(12) = 2^4+3^4 = 97. - Harvey P. Dale, Jul 16 2014
Inverse Möbius transform of n^4 * c(n), where c(n) is the prime characteristic (A010051). - Wesley Ivan Hurt, Jun 22 2024
LINKS
FORMULA
Additive with a(p^e) = p^4.
From Antti Karttunen, Jul 11 2017: (Start)
a(n) = A005068(n) + 16*A059841(n).
a(n) = A005081(n) + A005085(n) + 16*A059841(n).
a(n) = A005073(n) + A005077(n) + 81*A079978(n).
(End)
G.f.: Sum_{k>=1} prime(k)^4*x^prime(k)/(1 - x^prime(k)). - Ilya Gutkovskiy, Dec 24 2018
a(n) = Sum_{p|n, p prime} p^4. - Wesley Ivan Hurt, Feb 04 2022
a(n) = Sum_{d|n} d^4 * c(d), where c = A010051. - Wesley Ivan Hurt, Jun 22 2024
MAPLE
A005065 := proc(n)
add(d^4, d= numtheory[factorset](n)) ;
end proc;
seq(A005065(n), n=1..40) ; # R. J. Mathar, Nov 08 2011
MATHEMATICA
Join[{0}, Table[Total[Transpose[FactorInteger[n]][[1]]^4], {n, 2, 40}]] (* Harvey P. Dale, Jul 16 2014 *)
Array[DivisorSum[#, #^4 &, PrimeQ] &, 54] (* Michael De Vlieger, Jul 11 2017 *)
PROG
(Scheme) (define (A005065 n) (if (= 1 n) 0 (+ (A000583 (A020639 n)) (A005065 (A028234 n))))) ;; Antti Karttunen, Jul 10 2017
(Python)
from sympy import primefactors
def a(n): return sum(p**4 for p in primefactors(n))
print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jul 11 2017
(PARI) a(n) = my(f=factor(n)); sum(k=1, #f~, f[k, 1]^4); \\ Michel Marcus, Jul 11 2017
CROSSREFS
Column k=4 of A322080.
Sum of the k-th powers of the primes dividing n for k=0..10 : A001221 (k=0), A008472 (k=1), A005063 (k=2), A005064 (k=3), this sequence (k=4), A351193 (k=5), A351194 (k=6), A351195 (k=7), this sequence (k=8), A351197 (k=9), A351198 (k=10).
Cf. A010051.
Sequence in context: A330480 A334660 A088379 * A056553 A053167 A187363
KEYWORD
nonn
EXTENSIONS
More terms from Antti Karttunen, Jul 10 2017
STATUS
approved