login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A351198
Sum of the 10th powers of the primes dividing n.
11
0, 1024, 59049, 1024, 9765625, 60073, 282475249, 1024, 59049, 9766649, 25937424601, 60073, 137858491849, 282476273, 9824674, 1024, 2015993900449, 60073, 6131066257801, 9766649, 282534298, 25937425625, 41426511213649, 60073, 9765625, 137858492873, 59049, 282476273
OFFSET
1,2
COMMENTS
Inverse Möbius transform of n^10 * c(n), where c(n) is the prime characteristic (A010051). - Wesley Ivan Hurt, Jun 22 2024
LINKS
FORMULA
a(n) = Sum_{p|n, p prime} p^10.
G.f.: Sum_{k>=1} prime(k)^10 * x^prime(k) / (1 - x^prime(k)). - Ilya Gutkovskiy, Feb 16 2022
Additive with a(p^e) = p^10. - Amiram Eldar, Jun 20 2022
a(n) = Sum_{d|n} d^10 * c(d), where c = A010051. - Wesley Ivan Hurt, Jun 22 2024
MATHEMATICA
Array[DivisorSum[#, #^10 &, PrimeQ] &, 50]
f[p_, e_] := p^10; a[n_] := Plus @@ f @@@ FactorInteger[n]; a[1] = 0; Array[a, 100] (* Amiram Eldar, Jun 20 2022 *)
PROG
(Python)
from sympy import primefactors
def A351198(n): return sum(p**10 for p in primefactors(n)) # Chai Wah Wu, Feb 04 2022
(PARI) a(n) = vecsum(apply(x->x^10, factor(n)[, 1])); \\ Michel Marcus, Feb 05 2022
CROSSREFS
Sum of the k-th powers of the primes dividing n for k=0..10 : A001221 (k=0), A008472 (k=1), A005063 (k=2), A005064 (k=3), A005065 (k=4), A351193 (k=5), A351194 (k=6), A351195 (k=7), A351196 (k=8), A351197 (k=9), this sequence (k=10).
Cf. A010051, A030629 (p^10).
Sequence in context: A182681 A182682 A305941 * A195250 A016901 A017684
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Feb 04 2022
STATUS
approved