login
A351196
Sum of the 8th powers of the primes dividing n.
7
0, 256, 6561, 256, 390625, 6817, 5764801, 256, 6561, 390881, 214358881, 6817, 815730721, 5765057, 397186, 256, 6975757441, 6817, 16983563041, 390881, 5771362, 214359137, 78310985281, 6817, 390625, 815730977, 6561, 5765057, 500246412961, 397442, 852891037441, 256
OFFSET
1,2
COMMENTS
Inverse Möbius transform of n^8 * c(n), where c(n) is the prime characteristic (A010051). - Wesley Ivan Hurt, Jun 22 2024
LINKS
FORMULA
a(n) = Sum_{p|n, p prime} p^8.
G.f.: Sum_{k>=1} prime(k)^8 * x^prime(k) / (1 - x^prime(k)). - Ilya Gutkovskiy, Feb 16 2022
Additive with a(p^e) = p^8. - Amiram Eldar, Jun 20 2022
a(n) = Sum_{d|n} d^8 * c(d), where c = A010051. - Wesley Ivan Hurt, Jun 22 2024
MATHEMATICA
Array[DivisorSum[#, #^8 &, PrimeQ] &, 50]
f[p_, e_] := p^8; a[n_] := Plus @@ f @@@ FactorInteger[n]; a[1] = 0; Array[a, 100] (* Amiram Eldar, Jun 20 2022 *)
PROG
(Python)
from sympy import primefactors
def A351196(n): return sum(p**8 for p in primefactors(n)) # Chai Wah Wu, Feb 05 2022
CROSSREFS
Sum of the k-th powers of the primes dividing n for k=0..10 : A001221 (k=0), A008472 (k=1), A005063 (k=2), A005064 (k=3), A005065 (k=4), A351193 (k=5), A351194 (k=6), A351195 (k=7), this sequence (k=8), A351197 (k=9), A351198 (k=10).
Cf. A010051.
Sequence in context: A283576 A203284 A321832 * A016900 A017680 A210840
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Feb 04 2022
STATUS
approved