OFFSET
1,2
COMMENTS
The set of these terms is A213519. - Bernard Schott, Feb 11 2022
Inverse Möbius transform of n^3 * c(n), where c(n) is the prime characteristic (A010051). - Wesley Ivan Hurt, Jun 22 2024
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..10000
FORMULA
Additive with a(p^e) = p^3.
G.f.: Sum_{k>=1} prime(k)^3*x^prime(k)/(1 - x^prime(k)). - Ilya Gutkovskiy, Dec 24 2016
From Antti Karttunen, Jul 11 2017: (Start)
(End)
Dirichlet g.f.: primezeta(s-3)*zeta(s). - Benedict W. J. Irwin, Jul 11 2018
a(n) = Sum_{p|n, p prime} p^3. - Wesley Ivan Hurt, Feb 04 2022
a(n) = Sum_{d|n} d^3 * c(d), where c = A010051. - Wesley Ivan Hurt, Jun 22 2024
MATHEMATICA
Array[DivisorSum[#, #^3 &, PrimeQ] &, 60] (* Michael De Vlieger, Jul 11 2017 *)
f[p_, e_] := p^3; a[n_] := Plus @@ f @@@ FactorInteger[n]; a[1] = 0; Array[a, 100] (* Amiram Eldar, Jun 20 2022 *)
PROG
(Scheme) (define (A005064 n) (if (= 1 n) 0 (+ (A000578 (A020639 n)) (A005064 (A028234 n))))) ;; Antti Karttunen, Jul 10 2017
(Python)
from sympy import primefactors
def a(n): return sum(p**3 for p in primefactors(n))
print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jul 11 2017
(PARI) a(n) = my(f=factor(n)); sum(k=1, #f~, f[k, 1]^3); \\ Michel Marcus, Jul 11 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Antti Karttunen, Jul 10 2017
STATUS
approved