login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A005064
Sum of cubes of primes dividing n.
22
0, 8, 27, 8, 125, 35, 343, 8, 27, 133, 1331, 35, 2197, 351, 152, 8, 4913, 35, 6859, 133, 370, 1339, 12167, 35, 125, 2205, 27, 351, 24389, 160, 29791, 8, 1358, 4921, 468, 35, 50653, 6867, 2224, 133, 68921, 378, 79507, 1339, 152, 12175, 103823, 35, 343, 133, 4940, 2205, 148877, 35, 1456, 351, 6886, 24397, 205379, 160
OFFSET
1,2
COMMENTS
The set of these terms is A213519. - Bernard Schott, Feb 11 2022
Inverse Möbius transform of n^3 * c(n), where c(n) is the prime characteristic (A010051). - Wesley Ivan Hurt, Jun 22 2024
LINKS
FORMULA
Additive with a(p^e) = p^3.
G.f.: Sum_{k>=1} prime(k)^3*x^prime(k)/(1 - x^prime(k)). - Ilya Gutkovskiy, Dec 24 2016
From Antti Karttunen, Jul 11 2017: (Start)
a(n) = A005067(n) + 8*A059841(n).
a(n) = A005080(n) + A005084(n) + 8*A059841(n).
a(n) = A005072(n) + A005076(n) + 27*A079978(n).
(End)
Dirichlet g.f.: primezeta(s-3)*zeta(s). - Benedict W. J. Irwin, Jul 11 2018
a(n) = Sum_{p|n, p prime} p^3. - Wesley Ivan Hurt, Feb 04 2022
a(n) = Sum_{d|n} d^3 * c(d), where c = A010051. - Wesley Ivan Hurt, Jun 22 2024
MATHEMATICA
Array[DivisorSum[#, #^3 &, PrimeQ] &, 60] (* Michael De Vlieger, Jul 11 2017 *)
f[p_, e_] := p^3; a[n_] := Plus @@ f @@@ FactorInteger[n]; a[1] = 0; Array[a, 100] (* Amiram Eldar, Jun 20 2022 *)
PROG
(Scheme) (define (A005064 n) (if (= 1 n) 0 (+ (A000578 (A020639 n)) (A005064 (A028234 n))))) ;; Antti Karttunen, Jul 10 2017
(Python)
from sympy import primefactors
def a(n): return sum(p**3 for p in primefactors(n))
print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jul 11 2017
(PARI) a(n) = my(f=factor(n)); sum(k=1, #f~, f[k, 1]^3); \\ Michel Marcus, Jul 11 2017
CROSSREFS
Sum of the k-th powers of the primes dividing n for k=0..10 : A001221 (k=0), A008472 (k=1), A005063 (k=2), this sequence (k=3), A005065 (k=4), A351193 (k=5), A351194 (k=6), A351195 (k=7), this sequence (k=8), A351197 (k=9), A351198 (k=10).
Sequence in context: A070491 A070490 A088378 * A056551 A356193 A356192
KEYWORD
nonn
EXTENSIONS
More terms from Antti Karttunen, Jul 10 2017
STATUS
approved