login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A005067
Sum of cubes of odd primes dividing n.
7
0, 0, 27, 0, 125, 27, 343, 0, 27, 125, 1331, 27, 2197, 343, 152, 0, 4913, 27, 6859, 125, 370, 1331, 12167, 27, 125, 2197, 27, 343, 24389, 152, 29791, 0, 1358, 4913, 468, 27, 50653, 6859, 2224, 125, 68921, 370, 79507, 1331, 152, 12167, 103823, 27, 343, 125, 4940, 2197, 148877, 27, 1456, 343, 6886, 24389, 205379, 152
OFFSET
1,3
LINKS
Harvey P. Dale (terms 1 .. 1000) & Antti Karttunen, Table of n, a(n) for n = 1..10000
FORMULA
Additive with a(p^e) = 0 if p = 2, p^3 otherwise.
G.f.: Sum_{k>=2} prime(k)^3*x^prime(k)/(1 - x^prime(k)). - Ilya Gutkovskiy, Jan 06 2017
From Antti Karttunen, Jul 10 2017: (Start)
a(1) = 0; after which, for even n: a(n) = a(n/2), for odd n: a(n) = A020639(n)^3 + a(A028234(n)).
a(n) = A005064(A000265(n)).
(End)
MATHEMATICA
Join[{0}, Table[Total[Select[Transpose[FactorInteger[n]][[1]], OddQ]^3], {n, 2, 50}]] (* Harvey P. Dale, Jun 09 2016 *)
Array[DivisorSum[#, #^3 &, And[PrimeQ@ #, OddQ@ #] &] &, 60] (* Michael De Vlieger, Jul 11 2017 *)
PROG
(Scheme) (define (A005067 n) (cond ((= 1 n) 0) ((even? n) (A005067 (/ n 2))) (else (+ (A000578 (A020639 n)) (A005067 (A028234 n)))))) ;; Antti Karttunen, Jul 10 2017
(PARI) a(n) = my(f=factor(n)); sum(k=1, #f~, if (((p=f[k, 1])%2) == 1, p^3)); \\ Michel Marcus, Jul 11 2017
KEYWORD
nonn
EXTENSIONS
More terms from Antti Karttunen, Jul 10 2017
STATUS
approved