login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A178737
Coefficients in expansion of Jacobi theta_1'''(0).
1
1, -27, 0, 125, 0, 0, -343, 0, 0, 0, 729, 0, 0, 0, 0, -1331, 0, 0, 0, 0, 0, 2197, 0, 0, 0, 0, 0, 0, -3375, 0, 0, 0, 0, 0, 0, 0, 4913, 0, 0, 0, 0, 0, 0, 0, 0, -6859, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9261, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -12167, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15625, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
0,2
LINKS
FORMULA
Given g.f. A(x), then q * A(q^8) = -1/2 * theta_1'''(0, q^4) where the Jacobi nome q = exp(-Pi * K' / K).
a(n) = b(8*n + 1) where b() is multiplicative with b(p^e) = 0 if e odd, b(2^e) = 0^e, b(p^e) = p^(3 * e/2) if p == 1 (mod 4), b(p^e) = (-p)^(3 * e/2) if p == 3 (mod 4).
Convolution of A006352 and A010816.
G.f.: Sum_{k>=0} (-1)^k * (2*k + 1)^3 * x^(k * (k+1) / 2).
EXAMPLE
G.f. = 1 - 27*x + 125*x^3 - 343*x^6 + 729*x^10 - 1331*x^15 + 2197*x^21 + ...
G.f. = q - 27*q^9 + 125*q^25 - 343*q^49 + 729*q^81 - 1331*q^121 + ...
MATHEMATICA
a[ n_] := With[ {x = Sqrt[8 n + 1]}, If[ IntegerQ[x], (-1)^Quotient[x, 2] x^3, 0]]; (* Michael Somos, Mar 19 2017 *)
PROG
(PARI) {a(n) = my(x); if( n<0, 0, if(issquare(8*n + 1, &x), (-1)^(x\2) * x^3))};
CROSSREFS
Sequence in context: A050454 A277042 A224118 * A005067 A163574 A076108
KEYWORD
sign
AUTHOR
Michael Somos, Jun 08 2010
STATUS
approved