login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A178738
Moebius inversion of a sequence related to powers of 2.
3
1, -1, -1, 1, 2, -3, -5, 9, 15, -27, -49, 89, 164, -304, -565, 1057, 1987, -3745, -7085, 13445, 25575, -48771, -93210, 178481, 342392, -657935, -1266205, 2440323, 4709403, -9099507, -17602325, 34087058, 66076421, -128207979, -248983641
OFFSET
1,5
COMMENTS
Only odd indices make sense. The given sequence is a(1), a(3), a(5), etc.
This should be related to the Coxeter transformations for the posets of diagonally symmetric paths in an n*n grid. - F. Chapoton, Jun 11 2010
Start from 1, 1, -2, -2, -4, -4, 8, 8, 16, 16, -32, -32, -64, -64, 128, ... which is A016116(n-1) with negative signs in blocks of 4, assuming offset 1. The Mobius transform of that sequence is b(n) = 1, 0, -3, -3, -5, -2, 7, 10, 18, 20, -33, -25, -65, -72, 135, 120, ... for n >= 1, and the current sequence is a(n) = b(2n-1)/(2n-1). - R. J. Mathar, Oct 29 2011
EXAMPLE
b(1)=1*1; b(3)=-1*3; ...; b(9)=2*9.
MAPLE
A := proc(n)
(-1)^binomial(floor((n+1)/2), 2) * 2^floor((n-1)/2) ;
end proc:
L := [seq(A(n), n=1..40)] ;
b := MOBIUS(L) ;
for i from 1 to nops(b) by 2 do
printf("%d, ", op(i, b)/i) ;
end do: # R. J. Mathar, Oct 29 2011
MATHEMATICA
b[n_] := Sum[(-1)^Binomial[(d+1)/2, 2]*2^((d-1)/2)*MoebiusMu[n/d], {d, Divisors[n]}]/n;
a[n_] := b[2n - 1];
a /@ Range[35] (* Jean-François Alcover, Mar 16 2020 *)
PROG
(Sage)
def suite(n):
return sum((-1)**binomial(((d+1)//2), 2) * 2**((d-1)//2) * moebius(n//d) for d in divisors(n)) // n
[suite(n) for n in range(1, 22, 2)]
CROSSREFS
Similar to A022553 and A131868
Also related to A178749. - F. Chapoton, Jun 11 2010
Sequence in context: A090905 A065956 A328078 * A060013 A092424 A167510
KEYWORD
sign,uned
AUTHOR
F. Chapoton, Jun 08 2010
EXTENSIONS
I would like a more precise definition. - N. J. A. Sloane, Jun 08 2010
STATUS
approved