OFFSET
1,5
COMMENTS
Only odd indices make sense. The given sequence is a(1), a(3), a(5), etc.
This should be related to the Coxeter transformations for the posets of diagonally symmetric paths in an n*n grid. - F. Chapoton, Jun 11 2010
Start from 1, 1, -2, -2, -4, -4, 8, 8, 16, 16, -32, -32, -64, -64, 128, ... which is A016116(n-1) with negative signs in blocks of 4, assuming offset 1. The Mobius transform of that sequence is b(n) = 1, 0, -3, -3, -5, -2, 7, 10, 18, 20, -33, -25, -65, -72, 135, 120, ... for n >= 1, and the current sequence is a(n) = b(2n-1)/(2n-1). - R. J. Mathar, Oct 29 2011
EXAMPLE
b(1)=1*1; b(3)=-1*3; ...; b(9)=2*9.
MAPLE
A := proc(n)
(-1)^binomial(floor((n+1)/2), 2) * 2^floor((n-1)/2) ;
end proc:
L := [seq(A(n), n=1..40)] ;
b := MOBIUS(L) ;
for i from 1 to nops(b) by 2 do
printf("%d, ", op(i, b)/i) ;
end do: # R. J. Mathar, Oct 29 2011
MATHEMATICA
b[n_] := Sum[(-1)^Binomial[(d+1)/2, 2]*2^((d-1)/2)*MoebiusMu[n/d], {d, Divisors[n]}]/n;
a[n_] := b[2n - 1];
a /@ Range[35] (* Jean-François Alcover, Mar 16 2020 *)
PROG
(Sage)
def suite(n):
return sum((-1)**binomial(((d+1)//2), 2) * 2**((d-1)//2) * moebius(n//d) for d in divisors(n)) // n
[suite(n) for n in range(1, 22, 2)]
CROSSREFS
KEYWORD
sign,uned
AUTHOR
F. Chapoton, Jun 08 2010
EXTENSIONS
I would like a more precise definition. - N. J. A. Sloane, Jun 08 2010
STATUS
approved