login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A178738 Moebius inversion of a sequence related to powers of 2. 3
1, -1, -1, 1, 2, -3, -5, 9, 15, -27, -49, 89, 164, -304, -565, 1057, 1987, -3745, -7085, 13445, 25575, -48771, -93210, 178481, 342392, -657935, -1266205, 2440323, 4709403, -9099507, -17602325, 34087058, 66076421, -128207979, -248983641 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,5

COMMENTS

Only odd indices make sense. The given sequence is a(1), a(3), a(5), etc.

This should be related to the Coxeter transformations for the posets of diagonally symmetric paths in an n*n grid. - F. Chapoton, Jun 11 2010

Start from 1, 1, -2, -2, -4, -4, 8, 8, 16, 16, -32, -32, -64, -64, 128, ... which is A016116(n-1) with negative signs in blocks of 4, assuming offset 1. The Mobius transform of that sequence is b(n) = 1, 0, -3, -3, -5, -2, 7, 10, 18, 20, -33, -25, -65, -72, 135, 120, ... for n >= 1, and the current sequence is a(n) = b(2n-1)/(2n-1). - R. J. Mathar, Oct 29 2011

LINKS

Table of n, a(n) for n=1..35.

EXAMPLE

b(1)=1*1; b(3)=-1*3; ...; b(9)=2*9.

MAPLE

A := proc(n)

        (-1)^binomial(floor((n+1)/2), 2) * 2^floor((n-1)/2) ;

end proc:

L := [seq(A(n), n=1..40)] ;

b := MOBIUS(L) ;

for i from 1 to nops(b) by 2 do

        printf("%d, ", op(i, b)/i) ;

end do: # R. J. Mathar, Oct 29 2011

MATHEMATICA

b[n_] := Sum[(-1)^Binomial[(d+1)/2, 2]*2^((d-1)/2)*MoebiusMu[n/d], {d, Divisors[n]}]/n;

a[n_] := b[2n - 1];

a /@ Range[35] (* Jean-Fran├žois Alcover, Mar 16 2020 *)

PROG

(Sage)

def suite(n):

    return sum((-1)**binomial(((d+1)//2), 2) * 2**((d-1)//2) * moebius(n//d) for d in divisors(n)) // n

[suite(n) for n in range(1, 22, 2)]

CROSSREFS

Similar to A022553 and A131868

Also related to A178749. - F. Chapoton, Jun 11 2010

Sequence in context: A090905 A065956 A328078 * A060013 A092424 A167510

Adjacent sequences:  A178735 A178736 A178737 * A178739 A178740 A178741

KEYWORD

sign,uned

AUTHOR

F. Chapoton, Jun 08 2010

EXTENSIONS

I would like a more precise definition. - N. J. A. Sloane, Jun 08 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 31 00:16 EDT 2020. Contains 334747 sequences. (Running on oeis4.)