login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A060013
New record highs reached in A060000.
6
1, 2, 3, 5, 9, 15, 27, 51, 99, 195, 387, 771, 1539, 3075, 6147, 12291, 24579, 49155, 98307, 196611, 393219, 786435, 1572867, 3145731, 6291459, 12582915, 25165827, 50331651, 100663299, 201326595, 402653187, 805306371, 1610612739, 3221225475, 6442450947, 12884901891
OFFSET
1,2
FORMULA
For n>4: a(n) = 2*a(n-1)-3. For n>3: a(n) = 3*2^(n-3)+3 = 3*A000051(n-3) = A007283(n-3)+3.
a(n+1) = A060000(a(n)+1), a(1) = 1. - Reinhard Zumkeller, Mar 04 2008
G.f.: -x*(x^2-x+1)*(2*x^3+2*x^2-1) / ((x-1)*(2*x-1)). - Colin Barker, Jan 12 2013
E.g.f.: (144*exp(x) + 9*exp(2*x) - 153 - 114*x - 42*x^2 - 12*x^3 - 2*x^4)/48. - Stefano Spezia, Jul 25 2024
MATHEMATICA
h = f = {1, 2}; a = 1; b = 2; Do[ g = Sort[ h ]; If[ g[ [ -1 ] ] + 1 == n, c = a + b, k = 1; While[ g[ [ k ] ] == k, k++ ]; c = k ]; a = b; b = c; h = Append[ h, c ]; If[ c > g[ [ -1 ] ], f = Append[ f, c ] ], { n, 3, 10^4 } ]; f
LinearRecurrence[{3, -2}, {1, 2, 3, 5, 9, 15}, 40] (* Harvey P. Dale, Dec 12 2018 *)
CROSSREFS
Sequence in context: A065956 A328078 A178738 * A092424 A167510 A351359
KEYWORD
nonn,easy
AUTHOR
Robert G. Wilson v, Mar 15 2001
EXTENSIONS
Formulae and more terms from Henry Bottomley and Larry Reeves (larryr(AT)acm.org), Mar 19 2001
STATUS
approved