login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Moebius inversion of a sequence related to powers of 2.
3

%I #18 Mar 17 2020 19:37:48

%S 1,-1,-1,1,2,-3,-5,9,15,-27,-49,89,164,-304,-565,1057,1987,-3745,

%T -7085,13445,25575,-48771,-93210,178481,342392,-657935,-1266205,

%U 2440323,4709403,-9099507,-17602325,34087058,66076421,-128207979,-248983641

%N Moebius inversion of a sequence related to powers of 2.

%C Only odd indices make sense. The given sequence is a(1), a(3), a(5), etc.

%C This should be related to the Coxeter transformations for the posets of diagonally symmetric paths in an n*n grid. - _F. Chapoton_, Jun 11 2010

%C Start from 1, 1, -2, -2, -4, -4, 8, 8, 16, 16, -32, -32, -64, -64, 128, ... which is A016116(n-1) with negative signs in blocks of 4, assuming offset 1. The Mobius transform of that sequence is b(n) = 1, 0, -3, -3, -5, -2, 7, 10, 18, 20, -33, -25, -65, -72, 135, 120, ... for n >= 1, and the current sequence is a(n) = b(2n-1)/(2n-1). - _R. J. Mathar_, Oct 29 2011

%e b(1)=1*1; b(3)=-1*3; ...; b(9)=2*9.

%p A := proc(n)

%p (-1)^binomial(floor((n+1)/2),2) * 2^floor((n-1)/2) ;

%p end proc:

%p L := [seq(A(n),n=1..40)] ;

%p b := MOBIUS(L) ;

%p for i from 1 to nops(b) by 2 do

%p printf("%d,", op(i,b)/i) ;

%p end do: # _R. J. Mathar_, Oct 29 2011

%t b[n_] := Sum[(-1)^Binomial[(d+1)/2, 2]*2^((d-1)/2)*MoebiusMu[n/d], {d, Divisors[n]}]/n;

%t a[n_] := b[2n - 1];

%t a /@ Range[35] (* _Jean-François Alcover_, Mar 16 2020 *)

%o (Sage)

%o def suite(n):

%o return sum((-1)**binomial(((d+1)//2), 2) * 2**((d-1)//2) * moebius(n//d) for d in divisors(n)) // n

%o [suite(n) for n in range(1,22,2)]

%Y Similar to A022553 and A131868

%Y Also related to A178749. - _F. Chapoton_, Jun 11 2010

%K sign,uned

%O 1,5

%A _F. Chapoton_, Jun 08 2010

%E I would like a more precise definition. - _N. J. A. Sloane_, Jun 08 2010