login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Coefficients in expansion of Jacobi theta_1'''(0).
1

%I #15 Sep 19 2018 00:56:22

%S 1,-27,0,125,0,0,-343,0,0,0,729,0,0,0,0,-1331,0,0,0,0,0,2197,0,0,0,0,

%T 0,0,-3375,0,0,0,0,0,0,0,4913,0,0,0,0,0,0,0,0,-6859,0,0,0,0,0,0,0,0,0,

%U 9261,0,0,0,0,0,0,0,0,0,0,-12167,0,0,0,0,0,0,0,0,0,0,0,15625,0,0,0,0,0,0,0,0,0

%N Coefficients in expansion of Jacobi theta_1'''(0).

%H G. C. Greubel, <a href="/A178737/b178737.txt">Table of n, a(n) for n = 0..5000</a>

%F Given g.f. A(x), then q * A(q^8) = -1/2 * theta_1'''(0, q^4) where the Jacobi nome q = exp(-Pi * K' / K).

%F a(n) = b(8*n + 1) where b() is multiplicative with b(p^e) = 0 if e odd, b(2^e) = 0^e, b(p^e) = p^(3 * e/2) if p == 1 (mod 4), b(p^e) = (-p)^(3 * e/2) if p == 3 (mod 4).

%F Convolution of A006352 and A010816.

%F G.f.: Sum_{k>=0} (-1)^k * (2*k + 1)^3 * x^(k * (k+1) / 2).

%e G.f. = 1 - 27*x + 125*x^3 - 343*x^6 + 729*x^10 - 1331*x^15 + 2197*x^21 + ...

%e G.f. = q - 27*q^9 + 125*q^25 - 343*q^49 + 729*q^81 - 1331*q^121 + ...

%t a[ n_] := With[ {x = Sqrt[8 n + 1]}, If[ IntegerQ[x], (-1)^Quotient[x, 2] x^3, 0]]; (* _Michael Somos_, Mar 19 2017 *)

%o (PARI) {a(n) = my(x); if( n<0, 0, if(issquare(8*n + 1, &x), (-1)^(x\2) * x^3))};

%Y Cf. A006352, A010816.

%K sign

%O 0,2

%A _Michael Somos_, Jun 08 2010