login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of cubes of odd primes dividing n.
7

%I #22 Jul 12 2017 05:25:14

%S 0,0,27,0,125,27,343,0,27,125,1331,27,2197,343,152,0,4913,27,6859,125,

%T 370,1331,12167,27,125,2197,27,343,24389,152,29791,0,1358,4913,468,27,

%U 50653,6859,2224,125,68921,370,79507,1331,152,12167,103823,27,343,125,4940,2197,148877,27,1456,343,6886,24389,205379,152

%N Sum of cubes of odd primes dividing n.

%H Harvey P. Dale (terms 1 .. 1000) & Antti Karttunen, <a href="/A005067/b005067.txt">Table of n, a(n) for n = 1..10000</a>

%F Additive with a(p^e) = 0 if p = 2, p^3 otherwise.

%F G.f.: Sum_{k>=2} prime(k)^3*x^prime(k)/(1 - x^prime(k)). - _Ilya Gutkovskiy_, Jan 06 2017

%F From _Antti Karttunen_, Jul 10 2017: (Start)

%F a(1) = 0; after which, for even n: a(n) = a(n/2), for odd n: a(n) = A020639(n)^3 + a(A028234(n)).

%F a(n) = A005064(A000265(n)).

%F (End)

%t Join[{0},Table[Total[Select[Transpose[FactorInteger[n]][[1]],OddQ]^3],{n,2,50}]] (* _Harvey P. Dale_, Jun 09 2016 *)

%t Array[DivisorSum[#, #^3 &, And[PrimeQ@ #, OddQ@ #] &] &, 60] (* _Michael De Vlieger_, Jul 11 2017 *)

%o (Scheme) (define (A005067 n) (cond ((= 1 n) 0) ((even? n) (A005067 (/ n 2))) (else (+ (A000578 (A020639 n)) (A005067 (A028234 n)))))) ;; _Antti Karttunen_, Jul 10 2017

%o (PARI) a(n) = my(f=factor(n)); sum(k=1, #f~, if (((p=f[k,1])%2) == 1, p^3)); \\ _Michel Marcus_, Jul 11 2017

%Y Cf. A000265, A000578, A005064, A005066, A005068, A005069, A020639, A028234, A065091.

%K nonn

%O 1,3

%A _N. J. A. Sloane_

%E More terms from _Antti Karttunen_, Jul 10 2017