login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A005062
a(n) = 6^n - 5^n.
15
0, 1, 11, 91, 671, 4651, 31031, 201811, 1288991, 8124571, 50700551, 313968931, 1932641711, 11839990891, 72260648471, 439667406451, 2668522016831, 16163719991611, 97745259402791, 590286253682371
OFFSET
0,3
COMMENTS
These are the numerators of a(n) = (Integral_{x=0..1/3} (1-x/2)^n dx). E.g., a(3)=671/2592. The denominators are b(n) = 3*(n+1)*6^n. E.g., b(3)=2592. the subscripts in both cases are 0. - Al Hakanson (hawkuu(AT)excite.com), Feb 22 2004
Number of numbers with at most n digits whose largest digit is 5. For the first 5 terms, the first differences (i.e., ...with exactly n digits...) are given in A125373. - M. F. Hasler, May 03 2015
a(n) is the number of n-digit numbers whose smallest decimal digit is 4. - Stefano Spezia, Nov 15 2023
FORMULA
G.f.: x/((1-5*x)(1-6*x)).
a(n) = 11*a(n-1) - 30*a(n-2), n > 1; a(0)=0, a(1)=1. - Philippe Deléham, Jan 01 2009
E.g.f.: exp(6*x) - exp(5*x). - Mohammad K. Azarian, Jan 14 2009
a(n) = -(30)^n * a(-n) for all n in Z. - Michael Somos, Jul 14 2018
EXAMPLE
G.f. = x + 11*x^2 + 91*x^3 + 671*x^4 + 4651*x^5 + 31031*x^6 + 201811*x^7 + ... - Michael Somos, Jul 14 2018
MAPLE
restart:a:=n->sum(5^(n-j)*binomial(n, j), j=1..n): seq(a(n), n=0..19); # Zerinvary Lajos, Apr 18 2009
MATHEMATICA
f[n_]:=6^n-5^n; f[Range[0, 60]] (* Vladimir Joseph Stephan Orlovsky, Jan 31 2011 *)
LinearRecurrence[{11, -30}, {0, 1}, 20] (* Harvey P. Dale, May 28 2015 *)
PROG
(Sage) [lucas_number1(n, 11, 30) for n in range(0, 20)] # Zerinvary Lajos, Apr 27 2009
(Magma) [6^n - 5^n: n in [0..25]]; // Vincenzo Librandi, Jun 03 2011
(PARI) a(n)=6^n-5^n \\ M. F. Hasler, May 03 2015
(PARI) for(d=0, 9, print1(sum(n=1, 10^d-1, vecmax(digits(n))==5)", ")) \\ Only to illustrate the comment about "largest digit equals 5".
CROSSREFS
Cf. A005060 (5^n - 4^n), A125373.
Sequence in context: A201085 A055083 A016160 * A125374 A245599 A126532
KEYWORD
nonn,easy
STATUS
approved