Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Jun 20 2022 04:21:48
%S 0,0,81,0,625,81,2401,0,81,625,14641,81,28561,2401,706,0,83521,81,
%T 130321,625,2482,14641,279841,81,625,28561,81,2401,707281,706,923521,
%U 0,14722,83521,3026,81,1874161,130321,28642,625,2825761,2482,3418801,14641,706,279841,4879681,81,2401,625,83602,28561,7890481,81
%N Sum of 4th powers of odd primes dividing n.
%H Antti Karttunen, <a href="/A005068/b005068.txt">Table of n, a(n) for n = 1..10000</a>
%F Additive with a(p^e) = 0 if p = 2, p^4 otherwise.
%F From _Antti Karttunen_, Jul 10 2017: (Start)
%F a(1) = 0; after which, for even n: a(n) = a(n/2), for odd n: a(n) = A020639(n)^4 + a(A028234(n)).
%F a(n) = A005065(A000265(n)).
%F (End)
%F G.f.: Sum_{k>=2} prime(k)^4 * x^prime(k) / (1 - x^prime(k)). - _Ilya Gutkovskiy_, Aug 19 2021
%t Array[DivisorSum[#, #^4 &, And[PrimeQ@ #, OddQ@ #] &] &, 54] (* _Michael De Vlieger_, Jul 11 2017 *)
%t f[2, e_] := 0; f[p_, e_] := p^4; a[n_] := Plus @@ f @@@ FactorInteger[n]; a[1] = 0; Array[a, 50] (* _Amiram Eldar_, Jun 20 2022 *)
%o (Scheme) (define (A005068 n) (cond ((= 1 n) 0) ((even? n) (A005068 (/ n 2))) (else (+ (A000583 (A020639 n)) (A005068 (A028234 n)))))) ;; _Antti Karttunen_, Jul 10 2017
%o (PARI) a(n) = my(f=factor(n)); sum(k=1, #f~, if (((p=f[k,1])%2) == 1, p^4)); \\ _Michel Marcus_, Jul 11 2017
%Y Cf. A000265, A000583, A005065, A005066, A005067, A005069, A020639, A028234.
%K nonn
%O 1,3
%A _N. J. A. Sloane_
%E More terms from _Antti Karttunen_, Jul 10 2017