login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A218826
Number of indecomposable (by concatenation) alternating n-anagrams.
3
1, 1, 4, 25, 217, 2470, 35647, 637129, 13843948, 360022957, 11054457253, 396003680518, 16377463914091, 774714094061221, 41572230979229284, 2512149910125036865, 169831839578092130017, 12769241823369505582150, 1062122471116082751430087, 97264621940872013476357969
OFFSET
1,3
COMMENTS
Alternating anagrams enumeration is related to A000366 by a(n) = A000366(n+1).
For all n, a(n) are periodically congruent to 1, 1 and 4 modulo 6.
LINKS
G. Kreweras and J. Barraud, Anagrammes alternés, European Journal of Combinatorics,Volume 18, Issue 8, November 1997, Pages 887-891.
G. Kreweras and D. Dumont, Sur les anagrammes alternés, Discrete Mathematics, Volume 211, Issues 1-3, 28 January 2000, Pages 103-110.
FORMULA
G.f.: (1-Q(0))/x, where Q(k)= 1 - 1/2*(k+1)*(k+2)*x/(1 - 1/2*(k+1)*(k+2)*x/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, May 03 2013
G.f.: 1/Q(0), where Q(k) = 1 - (k+1)*(k+2)/2*x/(1 - (k+2)*(k+3)/2*x/Q(k+1) ; (continued fraction). - Sergei N. Gladkovskii, Nov 17 2013
a(n) = A000366(n + 1) - Sum_{k=2..n} A239894(n, k). - Andrew Howroyd, Feb 25 2020
PROG
(PARI) a000366(n)= {return((-1/2)^(n-2)*sum(k=0, n, binomial(n, k)*(1-2^(n+k+1))*bernfrac(n+k+1))); }
bi(n, k) = {if (matb[n, k] == 0, if (n==k, v=1, if (k==1, v = b(n), v = sum(i=1, n-k+1, b(i)*bi(n-i, k-1)); ); ); matb[n, k] = v; ); return (matb[n, k]); }
b(n) = {if (n==1, return(a000366(n+1)), return(a000366(n+1) - sum(i=2, n, bi(n, i)))); }
allb(m) = {matb = matrix(m, m); for (i=1, m, print1(b(i), ", "); ); }
CROSSREFS
Cf. A000366, A218827. First column of A239894.
Sequence in context: A198198 A007830 A305404 * A060911 A060912 A209319
KEYWORD
nonn
AUTHOR
Michel Marcus, Nov 07 2012
STATUS
approved