The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A218831 a(n) is the least r > 1 for which the interval (r*n, r*(n+1)) contains no prime, or a(n)=0 if no such r exists. 6
 0, 0, 0, 2, 0, 4, 2, 3, 0, 2, 3, 2, 2, 0, 6, 2, 2, 3, 2, 6, 3, 2, 4, 2, 2, 7, 2, 2, 4, 3, 2, 2, 4, 2, 4, 4, 2, 2, 3, 2, 3, 2, 2, 3, 2, 2, 2, 3, 2, 4, 3, 2, 3, 4, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 5, 2, 2, 3, 3, 2, 2, 2, 2, 4, 4, 2, 2, 3, 2, 2, 3, 2, 4, 2, 2, 3, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS In the first 50000000 terms a(n) is 0 only for n=1, 2, 3, 5, 9, 14. In the same range the largest value of a(n) is 16 at n=2540, 77384, 1679690, 3240054, 13078899. a(1)=0 is "Bertrand's postulate," which states that there is always a prime between k and 2*k. This was first proved by P. Chebyshev. Note that the equations a(2) = a(3) = 0 are results of M. El. Buchraoui and A. Loo respectively and could be proved with the uniform positions, using Theorem 30 for generalized Ramanujan numbers from the Shevelev link. The equation a(5) = 0 follows from the result of J. Nagura. For proof of the equations a(9)=a(14)=0, we used a known result of L. Schoenfeld (1976) that states that for n>2010760, between n and n*(1+1/16597) there is always a prime. LINKS Peter J. C. Moses., Table of n, a(n) for n = 1..20000 N. Amersi, O. Beckwith, S. J. Miller, R. Ronan, J. Sondow, Generalized Ramanujan primes, arXiv 2011. M. El Bachraoui, Primes in the interval [2n,3n], Int. J. Contemp. Math. Sciences 1:13 (2006), pp. 617-621. N. Amersi, O. Beckwith, S. J. Miller, R. Ronan, J. Sondow, Generalized Ramanujan primes, Combinatorial and Additive Number Theory, Springer Proc. in Math. & Stat., CANT 2011 and 2012, Vol. 101 (2014), 1-13 A. Loo, On the primes in the interval [3n,4n], International Journal of Contemporary Mathematical Sciences, volume 6, number 38, pages 1871-1882, 2011. J. Nagura, On the interval containing at least one prime number, Proc. Japan Acad., 28 (1952), 177-181. S. Ramanujan, A proof of Bertrand's postulate, J. Indian Math. Soc., 11 (1919), 181-182. V. Shevelev, Ramanujan and Labos primes, their generalizations, and classifications of primes, J. Integer Seq. 15 (2012) Article 12.5.4 Vladimir Shevelev, Charles R. Greathouse IV, Peter J. C. Moses, On intervals (kn, (k+1)n) containing a prime for all n>1, Journal of Integer Sequences, Vol. 16 (2013), Article 13.7.3. arXiv:1212.2785 L. Schoenfeld, Sharper bounds for the Chebyshev functions theta(x) and psi(x). II, Math. Comp. 30 (1975) 337-360. FORMULA a(n) = 0 <=> A220315(k) = n for some k. - Jonathan Sondow, Aug 04 2017 MATHEMATICA rmax = 100; a[n_] := Catch[ For[r = 2, r <= rmax, r++, If[PrimePi[r*n] == PrimePi[r*(n + 1)], Throw[r], If[r == rmax, Throw[0]]]]]; Table[ a[n] , {n, 1, 87}] (* Jean-François Alcover, Dec 13 2012 *) CROSSREFS Cf. A218769, A220268, A220269, A220273, A220274, A220281, A220315. Sequence in context: A195133 A308022 A001100 * A242595 A351912 A136265 Adjacent sequences:  A218828 A218829 A218830 * A218832 A218833 A218834 KEYWORD nonn AUTHOR Vladimir Shevelev, Charles R Greathouse IV and Peter J. C. Moses, Nov 07 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 26 04:26 EDT 2022. Contains 354074 sequences. (Running on oeis4.)