login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A220268 a(n) is the smallest number, such that for N >= a(n) there are at least n primes between 2*N and 3*N. 6
2, 5, 13, 14, 23, 25, 33, 43, 46, 58, 60, 61, 71, 77, 80, 88, 103, 104, 116, 123, 127, 144, 145, 148, 150, 160, 163, 181, 188, 196, 200, 203, 206, 214, 218, 237, 247, 253, 263, 266, 270, 275, 276, 287, 313, 323, 333, 340, 344, 347, 350, 354, 363, 365, 388 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

T. D. Noe, Table of n, a(n) for n = 1..1000

N. Amersi, O. Beckwith, S. J. Miller, R. Ronan, J. Sondow, Generalized Ramanujan primes, arXiv 2011.

N. Amersi, O. Beckwith, S. J. Miller, R. Ronan, J. Sondow, Generalized Ramanujan primes, Combinatorial and Additive Number Theory, Springer Proc. in Math. & Stat., CANT 2011 and 2012, Vol. 101 (2014), 1-13

V. Shevelev, Ramanujan and Labos primes, their generalizations, and classifications of primes, J. Integer Seq. 15 (2012) Article 12.5.4

Vladimir Shevelev, Charles R. Greathouse IV, Peter J. C. Moses, On intervals (kn, (k+1)n) containing a prime for all n>1, Journal of Integer Sequences, Vol. 16 (2013), Article 13.7.3. arXiv:1212.2785

FORMULA

a(1) = 2; for n >= 2, a(n) = ceiling(R_(3/2)(n)/3), where R_v(n) (v>1) are generalized Ramanujan numbers (see Shevelev's link). In particular, for n >= 1, {R_(3/2)(n)} = {2, 13, 37, 41, 67, 73, 97, 127, 137, 173, 179, 181, 211, 229, 239, ...}.

MATHEMATICA

nn = 60; t = Table[PrimePi[3 n] - PrimePi[2 n], {n, 10*nn}]; Join[{2}, Table[s = Flatten[Position[t, _?(# > n - 1 &)]]; i = Length[s]; While[i > 1 && s[[i]] - s[[i - 1]] == 1, i--]; s[[i]], {n, 2, nn}]] (* T. D. Noe, Dec 12 2012 *)

CROSSREFS

Cf. A084140.

Sequence in context: A089728 A127987 A247543 * A049476 A216889 A334494

Adjacent sequences:  A220265 A220266 A220267 * A220269 A220270 A220271

KEYWORD

nonn

AUTHOR

Vladimir Shevelev, Charles R Greathouse IV and Peter J. C. Moses, Dec 09 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 23 18:08 EDT 2022. Contains 353993 sequences. (Running on oeis4.)