

A049476


Positions of records in A346778.


4



1, 2, 5, 13, 14, 26, 61, 63, 111, 131, 151, 153, 155, 161, 179, 295, 390, 391, 398, 425, 428, 459, 485, 656, 675, 1142, 1143, 1169, 1243, 1247, 1255, 1263, 1267, 1639, 1643, 1646, 1748, 2690, 2702, 2703, 2728, 2767, 2777, 2786, 2840, 2877
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Previous name: Row numbers that set records for initial gap lengths g in the permutations found in A088643.


LINKS

Table of n, a(n) for n=1..46.
J. W. Roche, Letter regarding "M. J. Kenney and S. J. Bezuszka, Calendar problem 12, 1997", Mathematics Teacher, 91 (1998), 155.


EXAMPLE

For n = 4, when we examine row 13 in A088643, the Roche algorithm produces the initial row values 13, 10, 9, 8, 11, 12. The remaining values are equal to row 7 in A088643, and at no earlier point in row 13 are the remaining values equal to row m, 7 < m < 13. So we calculate the difference between 13 and 7 ("the uncharted length") to be 6, which is longer than the previous record uncharted length (A049478(3) = 4) set by row a(3) = 5. So a(4) = 13.  Peter Munn, Aug 03 2021 (based on text supplied by J. Stauduhar)


PROG

(PARI) {print1(m=0); for( n=1, oo, my( r=A088643_row(n)); for( g=1, #r1, if( Set(r[1..g]) == [ng+1..n] && r[g+1]==ng, g > m && print1(", "n)+ m=g; break)))} \\ M. F. Hasler, Aug 04 2021


CROSSREFS

Cf. A049477, A049478, A088643, A346778.
Sequence in context: A127987 A247543 A220268 * A216889 A334494 A168486
Adjacent sequences: A049473 A049474 A049475 * A049477 A049478 A049479


KEYWORD

nonn,nice


AUTHOR

N. J. A. Sloane


EXTENSIONS

Revised by Sean A. Irvine, Aug 03 2021


STATUS

approved



