The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A049476 Positions of records in A346778. 4
 1, 2, 5, 13, 14, 26, 61, 63, 111, 131, 151, 153, 155, 161, 179, 295, 390, 391, 398, 425, 428, 459, 485, 656, 675, 1142, 1143, 1169, 1243, 1247, 1255, 1263, 1267, 1639, 1643, 1646, 1748, 2690, 2702, 2703, 2728, 2767, 2777, 2786, 2840, 2877 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Previous name: Row numbers that set records for initial gap lengths g in the permutations found in A088643. LINKS J. W. Roche, Letter regarding "M. J. Kenney and S. J. Bezuszka, Calendar problem 12, 1997", Mathematics Teacher, 91 (1998), 155. EXAMPLE For n = 4, when we examine row 13 in A088643, the Roche algorithm produces the initial row values 13, 10, 9, 8, 11, 12. The remaining values are equal to row 7 in A088643, and at no earlier point in row 13 are the remaining values equal to row m, 7 < m < 13. So we calculate the difference between 13 and 7 ("the uncharted length") to be 6, which is longer than the previous record uncharted length (A049478(3) = 4) set by row a(3) = 5. So a(4) = 13. - Peter Munn, Aug 03 2021 (based on text supplied by J. Stauduhar) PROG (PARI) {print1(m=0); for( n=1, oo, my( r=A088643_row(n)); for( g=1, #r-1, if( Set(r[1..g]) == [n-g+1..n] && r[g+1]==n-g, g > m && print1(", "n)+ m=g; break)))} \\ M. F. Hasler, Aug 04 2021 CROSSREFS Cf. A049477, A049478, A088643, A346778. Sequence in context: A127987 A247543 A220268 * A216889 A334494 A168486 Adjacent sequences:  A049473 A049474 A049475 * A049477 A049478 A049479 KEYWORD nonn,nice AUTHOR EXTENSIONS Revised by Sean A. Irvine, Aug 03 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 17 14:19 EDT 2022. Contains 353746 sequences. (Running on oeis4.)