|
|
A168486
|
|
Numbers that are congruent to {2, 5} mod 11.
|
|
1
|
|
|
2, 5, 13, 16, 24, 27, 35, 38, 46, 49, 57, 60, 68, 71, 79, 82, 90, 93, 101, 104, 112, 115, 123, 126, 134, 137, 145, 148, 156, 159, 167, 170, 178, 181, 189, 192, 200, 203, 211, 214, 222, 225, 233, 236, 244, 247, 255, 258, 266, 269, 277, 280, 288, 291, 299, 302, 310
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
|
|
FORMULA
|
a(n) = 11*n - a(n-1) - 4 with n>1, a(1)=2.
a(n) = (22*n - 5*(-1)^n - 19)/4.
a(n) = a(n-1) + a(n-2) - a(n-3).
G.f.: x*(2 + 3*x + 6*x^2)/ ((1+x) * (x-1)^2). (End)
E.g.f.: (1/2)*(12 + (11*x - 12)*cosh(x) + (11*x - 7)*sinh(x)). - G. C. Greubel, Jul 23 2016
E.g.f.: (12 + (11*x -12)*exp(x) + 5*sinh(x))/2. - David Lovler, Jul 16 2022
|
|
MATHEMATICA
|
Select[Range[310], MemberQ[{2, 5}, Mod[#, 11]]&] (* Ray Chandler, Jul 07 2015 *)
LinearRecurrence[{1, 1, -1}, {2, 5, 13}, 57] (* Ray Chandler, Jul 07 2015 *)
Rest[CoefficientList[Series[x*(2+3*x+6*x^2)/((1+x)*(x-1)^2), {x, 0, 57}], x] ] (* Ray Chandler, Jul 07 2015 *)
|
|
PROG
|
(PARI) a(n) = (22*n - 5*(-1)^n - 19)/4 \\ David Lovler, Jul 16 2022
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|