OFFSET
1,5
COMMENTS
Equivalently, least k such that {b(1), b(2), ..., b(k)} = {n, n-1, ..., n-k+1} and {b(1), b(2), ..., b(k), b(k+1)} = {n, n-1, ..., n-k+1, n-k}.
Since any row n of A088643 is a permutation of [1..n] having 1 as last term (conjectured), one always has a(n) <= n - 1. - M. F. Hasler, Aug 04 2021
LINKS
Sean A. Irvine, Table of n, a(n) for n = 1..10000
Sean A. Irvine, Java program (github)
Peter Munn, Plot of sequence terms as a proportion of n
MATHEMATICA
(* t is A088643 *)
t[n_, 1] := n;
t[n_, k_] := t[n, k] = For[m = n-1, m >= 1, m--, If[PrimeQ[m + t[n, k-1]] && FreeQ[Table[t[n, j], {j, 1, k-1}], m], Return[m]]];
a[n_] := If[n == 1, 0, Module[{r, g}, r = Table[t[n, k], {k, 1, n}]; For[g = 1, g <= n-1, g++, If[Union@r[[1 ;; g]] == Range[n-g+1, n] && r[[g+1]] == n-g, Return[g]]]]];
Table[a[n], {n, 1, 400}] (* Jean-François Alcover, Aug 11 2022, after M. F. Hasler *)
PROG
(PARI) apply( {A346778(n, r=A088643_row(n))=for(g=1, n-1, Set(r[1..g])==[n-g+1..n] && r[g+1]==n-g && return(g))}, [1..99]) \\ M. F. Hasler, Aug 04 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Sean A. Irvine, Aug 03 2021
EXTENSIONS
Definition corrected by M. F. Hasler, Aug 03 2021
STATUS
approved