login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the smallest number, such that for N >= a(n) there are at least n primes between 2*N and 3*N.
6

%I #43 Nov 30 2019 01:28:39

%S 2,5,13,14,23,25,33,43,46,58,60,61,71,77,80,88,103,104,116,123,127,

%T 144,145,148,150,160,163,181,188,196,200,203,206,214,218,237,247,253,

%U 263,266,270,275,276,287,313,323,333,340,344,347,350,354,363,365,388

%N a(n) is the smallest number, such that for N >= a(n) there are at least n primes between 2*N and 3*N.

%H T. D. Noe, <a href="/A220268/b220268.txt">Table of n, a(n) for n = 1..1000</a>

%H N. Amersi, O. Beckwith, S. J. Miller, R. Ronan, J. Sondow, <a href="http://arxiv.org/abs/1108.0475">Generalized Ramanujan primes</a>, arXiv 2011.

%H N. Amersi, O. Beckwith, S. J. Miller, R. Ronan, J. Sondow, <a href="http://link.springer.com/chapter/10.1007/978-1-4939-1601-6_1">Generalized Ramanujan primes</a>, Combinatorial and Additive Number Theory, Springer Proc. in Math. & Stat., CANT 2011 and 2012, Vol. 101 (2014), 1-13

%H V. Shevelev, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL15/Shevelev/shevelev19.html">Ramanujan and Labos primes, their generalizations, and classifications of primes</a>, J. Integer Seq. 15 (2012) Article 12.5.4

%H Vladimir Shevelev, Charles R. Greathouse IV, Peter J. C. Moses, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL16/Moses/moses1.html">On intervals (kn, (k+1)n) containing a prime for all n>1</a>, Journal of Integer Sequences, Vol. 16 (2013), Article 13.7.3. <a href="http://arxiv.org/abs/1212.2785">arXiv:1212.2785</a>

%F a(1) = 2; for n >= 2, a(n) = ceiling(R_(3/2)(n)/3), where R_v(n) (v>1) are generalized Ramanujan numbers (see Shevelev's link). In particular, for n >= 1, {R_(3/2)(n)} = {2, 13, 37, 41, 67, 73, 97, 127, 137, 173, 179, 181, 211, 229, 239, ...}.

%t nn = 60; t = Table[PrimePi[3 n] - PrimePi[2 n], {n, 10*nn}]; Join[{2}, Table[s = Flatten[Position[t, _?(# > n - 1 &)]]; i = Length[s]; While[i > 1 && s[[i]] - s[[i - 1]] == 1, i--]; s[[i]], {n, 2, nn}]] (* _T. D. Noe_, Dec 12 2012 *)

%Y Cf. A084140.

%K nonn

%O 1,1

%A _Vladimir Shevelev_, _Charles R Greathouse IV_ and _Peter J. C. Moses_, Dec 09 2012