The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A220266 G.f.: Sum_{n>=1} (2*(1+x)^n - 1) * ((1+x)^n - 1)^(n-1). 3
 1, 4, 18, 144, 1604, 22944, 400624, 8259680, 196358760, 5287879092, 159094582274, 5288950560768, 192527721428892, 7616404083126180, 325361411700398046, 14926683772801407168, 731947910056020737036, 38204289826040411251632, 2114787166947079113869760 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Compare the g.f. of this sequence to the identity (when G(x) = 1+x): 1 = Sum_{n>=1} (2*G(x)^n - 1) * (1 - G(x)^n)^(n-1) for all G(x) such that G(0)=1. LINKS FORMULA Equals the antidiagonal sums of triangle A220265: a(n) = Sum_{k=0..n} A220265(n-k+1,k) for n>=0. G.f.: 1 + Sum_{n>=1} 2*(2*(1+x)^(2*n) - 1) * ((1+x)^(2*n) - 1)^(2*n-1). G.f.: -1 + Sum_{n>=0} 2*(2*(1+x)^(2*n+1) - 1) * ((1+x)^(2*n+1) - 1)^(2*n). EXAMPLE G.f.: A(x) = 1 + 4*x + 18*x^2 + 144*x^3 + 1604*x^4 + 22944*x^5 +... where A(x) = (1+2*x) + (1+4*x+2*x^2)*(2*x+x^2) + (1+6*x+6*x^2+2*x^3)*(3*x+3*x^2+x^3)^2 + (1+8*x+12*x^2+8*x^3+2*x^4)*(4*x+6*x^2+4*x^3+x^4)^3 +... Compare the g.f. to the identity: 1 = (1+2*x) - (1+4*x+2*x^2)*(2*x+x^2) + (1+6*x+6*x^2+2*x^3)*(3*x+3*x^2+x^3)^2 - (1+8*x+12*x^2+8*x^3+2*x^4)*(4*x+6*x^2+4*x^3+x^4)^3 +-... PROG (PARI) {a(n)=polcoeff(sum(m=1, n+1, (2*(1+x)^m - 1) * ((1+x)^m - 1 +x*O(x^n))^(m-1)), n)} for(n=0, 20, print1(a(n), ", ")) (PARI) /* As Row Sums of Triangle A220265: */ {A220265(n, k)=polcoeff((2*(1+x)^n-1)*((1+x)^n-1)^(n-1)/x^(n-1), k)} {a(n)=sum(k=0, n, A220265(n-k+1, k))} for(n=0, 20, print1(a(n), ", ")) (PARI) {a(n)=polcoeff(1+sum(m=1, n\2+1, 2*(2*(1+x)^(2*m) - 1) * ((1+x)^(2*m) - 1 +x*O(x^n))^(2*m-1)), n)} for(n=0, 20, print1(a(n), ", ")) (PARI) {a(n)=polcoeff(-1+sum(m=0, n\2, 2*(2*(1+x)^(2*m+1) - 1) * ((1+x)^(2*m+1) - 1 +x*O(x^n))^(2*m)), n)} for(n=0, 20, print1(a(n), ", ")) CROSSREFS Cf. A220265, A220231. Sequence in context: A304997 A060841 A059837 * A218917 A054759 A286630 Adjacent sequences:  A220263 A220264 A220265 * A220267 A220268 A220269 KEYWORD nonn AUTHOR Paul D. Hanna, Dec 09 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 15:57 EST 2021. Contains 349565 sequences. (Running on oeis4.)