OFFSET
1,3
REFERENCES
S. G. Mikhlin, Constants in Some Inequalities of Analysis, Wiley, NY, 1986, see p. 59.
FORMULA
T(s, s) = (s-1)^2 * T(s-1, s-1) / floor(s/2) - Larry Reeves.
a(n) = Sum_{k=0..n} (-1)^(n+k)*C(n, k)*Sum_{i=0..n} C(n, floor(i/2))*k^i. - Paul Barry, Aug 05 2004
a(n) = (n-1)!*binomial(n-1,floor(n-1,2)), n>=1.
Conjecture: +(n+1)*a(n) -2*n*a(n-1) -4*n*(n-1)^2*a(n-2)=0. - R. J. Mathar, Nov 24 2012
MAPLE
T := proc(s, t) option remember: if s=1 or t=1 then RETURN(1) fi: if t>1 and t mod 2 = 1 then RETURN(product((s-i)^2, i=1..(t-1)/2)) else RETURN((s-t/2)*product((s-i)^2, i=1..t/2-1)) fi: end: for s from 1 to 50 do printf(`%d, `, T(s, s)) od:
MATHEMATICA
a[n_] := (n-1)! Binomial[n-1, Quotient[n-1, 2]];
Table[a[n], {n, 1, 19}] (* Jean-François Alcover, Apr 29 2023 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Feb 25 2001
EXTENSIONS
More terms from James A. Sellers, Feb 26 2001 and from Larry Reeves (larryr(AT)acm.org), Feb 26 2001
STATUS
approved