login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A059837
Diagonal T(s,s) of triangle A059836.
2
1, 1, 4, 18, 144, 1200, 14400, 176400, 2822400, 45722880, 914457600, 18441561600, 442597478400, 10685567692800, 299195895398400, 8414884558080000, 269276305858560000, 8646761377013760000, 311283409572495360000
OFFSET
1,3
REFERENCES
S. G. Mikhlin, Constants in Some Inequalities of Analysis, Wiley, NY, 1986, see p. 59.
FORMULA
T(s, s) = (s-1)^2 * T(s-1, s-1) / floor(s/2) - Larry Reeves.
a(n) = Sum_{k=0..n} (-1)^(n+k)*C(n, k)*Sum_{i=0..n} C(n, floor(i/2))*k^i. - Paul Barry, Aug 05 2004
a(n) = (n-1)!*binomial(n-1,floor(n-1,2)), n>=1.
E.g.f. is the integral of the o.g.f. of A001405. With offset 0: e.g.f. is o.g.f. of A001405.
Conjecture: +(n+1)*a(n) -2*n*a(n-1) -4*n*(n-1)^2*a(n-2)=0. - R. J. Mathar, Nov 24 2012
MAPLE
T := proc(s, t) option remember: if s=1 or t=1 then RETURN(1) fi: if t>1 and t mod 2 = 1 then RETURN(product((s-i)^2, i=1..(t-1)/2)) else RETURN((s-t/2)*product((s-i)^2, i=1..t/2-1)) fi: end: for s from 1 to 50 do printf(`%d, `, T(s, s)) od:
MATHEMATICA
a[n_] := (n-1)! Binomial[n-1, Quotient[n-1, 2]];
Table[a[n], {n, 1, 19}] (* Jean-François Alcover, Apr 29 2023 *)
CROSSREFS
Cf. A059836.
Sequence in context: A304997 A370774 A060841 * A220266 A218917 A054759
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Feb 25 2001
EXTENSIONS
More terms from James A. Sellers, Feb 26 2001 and from Larry Reeves (larryr(AT)acm.org), Feb 26 2001
STATUS
approved