login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A129718
Triangle read by rows: T(n,k) is the number of Fibonacci binary words of length n and having k runs of 1's (n >= 0, 0 <= k <= floor((n+1)/2)). A Fibonacci binary word is a binary word having no 00 subword. A run of 1's is a maximal subword of the form 11..1.
1
1, 1, 1, 0, 3, 0, 4, 1, 0, 4, 4, 0, 4, 8, 1, 0, 4, 12, 5, 0, 4, 16, 13, 1, 0, 4, 20, 25, 6, 0, 4, 24, 41, 19, 1, 0, 4, 28, 61, 44, 7, 0, 4, 32, 85, 85, 26, 1, 0, 4, 36, 113, 146, 70, 8, 0, 4, 40, 145, 231, 155, 34, 1, 0, 4, 44, 181, 344, 301, 104, 9, 0, 4, 48, 221, 489, 532, 259, 43, 1
OFFSET
0,5
COMMENTS
Row n has 1+floor((n+1)/2) terms.
Row sums are the Fibonacci numbers (A000045).
T(n,k) = A129717(n,k-1) (since in each word the number of runs of 1's = 1 + the number of 101's).
Sum_{k=0..floor((n+1)/2)} k*T(n,k) = A055244(n) (n >= 1).
FORMULA
G.f. = G(t,z) = (1+z)(1-z+tz)/(1-z-tz^2).
T(n,k) = binomial(n-k,k-1) + 2*binomial(n-k-1,k-1) + binomial(n-k-2,k-1) for n >= 4 and 0 <= k < floor((n+1)/2).
EXAMPLE
T(6,3)=5 because we have 110101, 101101, 101010, 101011 and 010101.
Triangle starts:
1;
1, 1;
0, 3;
0, 4, 1;
0, 4, 4;
0, 4, 8, 1;
0, 4, 12, 5;
MAPLE
G:=(1+z)*(1-z+t*z)/(1-z-t*z^2): Gser:=simplify(series(G, z=0, 21)): for n from 0 to 18 do P[n]:=sort(coeff(Gser, z, n)) od: for n from 0 to 17 do seq(coeff(P[n], t, j), j=0..ceil(n/2)) od; # yields sequence in triangular form
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, May 12 2007
STATUS
approved