login
A056888
a(n) = number of k such that sum of digits of 9^k is 9n.
1
2, 3, 2, 0, 4, 1, 3, 1, 1, 5, 2, 2, 3, 1, 0, 3, 6, 2, 3, 0, 0, 4, 1, 3, 1, 4, 1, 1, 0, 1, 3, 2, 3, 5, 1, 1, 3, 3, 2, 5, 0, 3, 3, 1, 1, 3, 2, 2, 0, 2, 1, 5, 2, 1, 1, 1, 1, 3, 4, 5, 1, 0, 1, 3, 2, 1, 2, 4, 5, 1, 1, 2, 1, 0, 1, 2, 4, 1, 2, 5, 0, 2, 4, 3, 2, 2, 1, 2, 2, 2, 0, 2, 3, 2, 1, 5, 1, 0, 4
OFFSET
1,1
COMMENTS
Proposed by Mark Sapir, Math. Dept., Vanderbilt University, who remarks (August 2000) that he can prove that a(n) is always finite and that a(1) = 2.
Values of a(n) for n>1 computed numerically by Michael Kleber, Sep 02 2000 and David W. Wilson, Sep 06 2000.
All terms except the first are only conjectures. For the theorem that a(n) is always finite, see Senge-Straus and Stewart. - N. J. A. Sloane, Jan 06 2011
REFERENCES
H. G. Senge and E. G. Straus, PV-numbers and sets of multiplicity, Periodica Math. Hungar., 3 (1971), 93-100.
C. L. Stewart, On the representation of an integer in two different bases, J. Reine Angew. Math., 319 (1980), 63-72.
EXAMPLE
There are two powers of 9 with digit-sum 9, namely 9 and 81, so a(1) = 2.
CROSSREFS
Cf. A065999.
Sequence in context: A165192 A104771 A307688 * A286297 A339451 A111182
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, Sep 05 2000
STATUS
approved