login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A056888
a(n) = number of k such that sum of digits of 9^k is 9n.
1
2, 3, 2, 0, 4, 1, 3, 1, 1, 5, 2, 2, 3, 1, 0, 3, 6, 2, 3, 0, 0, 4, 1, 3, 1, 4, 1, 1, 0, 1, 3, 2, 3, 5, 1, 1, 3, 3, 2, 5, 0, 3, 3, 1, 1, 3, 2, 2, 0, 2, 1, 5, 2, 1, 1, 1, 1, 3, 4, 5, 1, 0, 1, 3, 2, 1, 2, 4, 5, 1, 1, 2, 1, 0, 1, 2, 4, 1, 2, 5, 0, 2, 4, 3, 2, 2, 1, 2, 2, 2, 0, 2, 3, 2, 1, 5, 1, 0, 4
OFFSET
1,1
COMMENTS
Proposed by Mark Sapir, Math. Dept., Vanderbilt University, who remarks (August 2000) that he can prove that a(n) is always finite and that a(1) = 2.
Values of a(n) for n>1 computed numerically by Michael Kleber, Sep 02 2000 and David W. Wilson, Sep 06 2000.
All terms except the first are only conjectures. For the theorem that a(n) is always finite, see Senge-Straus and Stewart. - N. J. A. Sloane, Jan 06 2011
REFERENCES
H. G. Senge and E. G. Straus, PV-numbers and sets of multiplicity, Periodica Math. Hungar., 3 (1971), 93-100.
C. L. Stewart, On the representation of an integer in two different bases, J. Reine Angew. Math., 319 (1980), 63-72.
EXAMPLE
There are two powers of 9 with digit-sum 9, namely 9 and 81, so a(1) = 2.
CROSSREFS
Cf. A065999.
Sequence in context: A165192 A104771 A307688 * A286297 A339451 A111182
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, Sep 05 2000
STATUS
approved