login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of the smallest side lengths of all integer-sided triangles with perimeter n.
2

%I #33 Oct 20 2021 15:45:20

%S 0,0,1,0,1,2,3,2,6,5,9,9,13,13,22,18,27,29,38,35,51,48,64,63,79,78,

%T 103,95,120,122,147,141,177,171,207,204,240,237,286,273,322,323,372,

%U 362,426,416,480,474,538,532,613,594,675,674,755,740,840,825,925

%N Sum of the smallest side lengths of all integer-sided triangles with perimeter n.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Integer_triangle">Integer Triangle</a>

%F a(n) = Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)} sign(floor((i+k)/(n-i-k+1))) * k.

%F Conjectures from _Colin Barker_, May 12 2019: (Start)

%F G.f.: x^3*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6) / ((1 - x)^4*(1 + x)^3*(1 + x^2)^2*(1 + x + x^2)^2).

%F a(n) = -a(n-1) + 2*a(n-3) + 4*a(n-4) + 2*a(n-5) - a(n-6) - 5*a(n-7) - 5*a(n-8) - a(n-9) + 2*a(n-10) + 4*a(n-11) + 2*a(n-12) - a(n-14) - a(n-15) for n>15.

%F (End)

%t Table[Sum[Sum[k*Sign[Floor[(i + k)/(n - i - k + 1)]], {i, k, Floor[(n - k)/2]}], {k, Floor[n/3]}], {n, 100}]

%Y Cf. A005044.

%K nonn

%O 1,6

%A _Wesley Ivan Hurt_, May 11 2019