login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A308105
Numbers m such that m is greater than the sum of the k-th powers of its digits, where k is the number of digits of m.
1
10, 11, 12, 13, 20, 21, 22, 23, 24, 30, 31, 32, 33, 34, 35, 40, 41, 42, 43, 44, 45, 50, 51, 52, 53, 54, 55, 60, 61, 62, 63, 64, 65, 70, 71, 72, 73, 74, 75, 80, 81, 82, 83, 84, 90, 91, 92, 93, 100, 101, 102, 103, 104, 110, 111, 112, 113, 114, 120, 121, 122, 123, 124, 130, 131, 132, 133, 134
OFFSET
1,1
COMMENTS
These integers are called "nombres résistants" on the French site Diophante.
There exists a smallest number M_0 such that every number >= M_0 is a term of this sequence. This integer has 60 digits: M_0 = 102 * 10^57. So 102 * 10^57 - 1 is not "résistant" (proof in the link).
LINKS
Diophante, A367. Les entiers font de la résistance, Oct. 2017 (in French).
FORMULA
Numbers m such that m - A101337(m) > 0.
EXAMPLE
34 - (3^2 + 4^2) = 9 so 34 is a term.
126 - (1^3 + 2^3 + 6^3) = -99 and 126 is not a term.
MAPLE
filter:= proc(n) local L, m, t;
L:= convert(n, base, 10);
m:= nops(L);
n > add(t^m, t=L)
end proc:
select(filter, [$1..1000]); # Robert Israel, Jun 21 2019
MATHEMATICA
Select[Range[140], # - Total[IntegerDigits[#]^IntegerLength[#]] > 0 &] (* Michael De Vlieger, Jun 09 2019 *)
PROG
(Magma) sol:=[]; v:=[]; digit:=[]; m:=1;
for u in [1..150] do
digit:=Intseq(u);
for i in [1..#digit] do v[i]:=digit[i]^#digit; end for;
if u-&+v gt 0 then sol[m]:=u; m:=m+1; end if;
end for;
sol; // Marius A. Burtea, May 13 2019
(PARI) isok(n) = { my(d=digits(n), nb=#d); n > sum(k=1, #d, d[k]^nb); } \\ Michel Marcus, May 19 2019
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Bernard Schott, May 13 2019
STATUS
approved