login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A308102
Sum of the perimeters of all integer-sided scalene triangles with perimeter n.
0
0, 0, 0, 0, 0, 0, 0, 0, 9, 0, 11, 12, 26, 14, 45, 32, 68, 54, 95, 80, 147, 110, 184, 168, 250, 208, 324, 280, 406, 360, 496, 448, 627, 544, 735, 684, 888, 798, 1053, 960, 1230, 1134, 1419, 1320, 1665, 1518, 1880, 1776, 2156, 2000, 2448, 2288, 2756, 2592
OFFSET
1,9
FORMULA
a(n) = n * Sum_{k=1..floor((n-1)/3)} Sum_{i=k+1..floor((n-k-1)/2)} sign(floor((i+k)/(n-i-k+1))).
Conjectures from Colin Barker, May 13 2019: (Start)
G.f.: x^9*(3 + 2*x + x^2)*(3 + x + 2*x^2) / ((1 - x)^4*(1 + x)^3*(1 + x^2)^2*(1 + x + x^2)^2).
a(n) = -a(n-1) + 2*a(n-3) + 4*a(n-4) + 2*a(n-5) - a(n-6) - 5*a(n-7) - 5*a(n-8) - a(n-9) + 2*a(n-10) + 4*a(n-11) + 2*a(n-12) - a(n-14) - a(n-15) for n>15.
(End)
MATHEMATICA
Table[n*Sum[Sum[Sign[Floor[(i + k)/(n - i - k + 1)]], {i, k + 1,
Floor[(n - k - 1)/2]}], {k, Floor[(n - 1)/3]}], {n, 100}]
PROG
(PARI) a(n) = n * sum(k=1, (n-1)\3, sum(i=k+1, (n-k-1)\2, sign((i+k)\(n-i-k+1)))); \\ Michel Marcus, May 13 2019
CROSSREFS
Cf. A005044.
Sequence in context: A341486 A349825 A320379 * A338016 A062047 A117465
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, May 12 2019
STATUS
approved