OFFSET
1,9
LINKS
Wikipedia, Integer Triangle
FORMULA
a(n) = n * Sum_{k=1..floor((n-1)/3)} Sum_{i=k+1..floor((n-k-1)/2)} sign(floor((i+k)/(n-i-k+1))).
Conjectures from Colin Barker, May 13 2019: (Start)
G.f.: x^9*(3 + 2*x + x^2)*(3 + x + 2*x^2) / ((1 - x)^4*(1 + x)^3*(1 + x^2)^2*(1 + x + x^2)^2).
a(n) = -a(n-1) + 2*a(n-3) + 4*a(n-4) + 2*a(n-5) - a(n-6) - 5*a(n-7) - 5*a(n-8) - a(n-9) + 2*a(n-10) + 4*a(n-11) + 2*a(n-12) - a(n-14) - a(n-15) for n>15.
(End)
MATHEMATICA
Table[n*Sum[Sum[Sign[Floor[(i + k)/(n - i - k + 1)]], {i, k + 1,
Floor[(n - k - 1)/2]}], {k, Floor[(n - 1)/3]}], {n, 100}]
PROG
(PARI) a(n) = n * sum(k=1, (n-1)\3, sum(i=k+1, (n-k-1)\2, sign((i+k)\(n-i-k+1)))); \\ Michel Marcus, May 13 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, May 12 2019
STATUS
approved